码迷,mamicode.com
首页 > 其他好文 > 详细

在线性回归中添加变量显示

时间:2020-06-11 21:54:45      阅读:66      评论:0      收藏:0      [点我收藏+]

标签:mode   import   ima   tar   writer   cal   ons   shape   session   

在 TensorBoard 中观察损失模型的参数,损失值等变量的变化。

一、实现步骤

  • 1.创建事件文件
file_writer = tf.summary.FileWrite(‘e:/events/test‘,graph=sess.graph)
  • 2.收集变量
    收集对于损失函数和准确率等单值变量使用 tf.summary.scalar(name=’’,tensor),收集高维 度变量参数使用 tf.summary.histogram(name=’’,tensor),收集输入的图片张量能显示图片使用 tf.summary.image(name=’’,tensor),其中 name 为变量的名字,tensor 为值。使用示例如下:
tf.summary.scalar(‘error’,error) 
tf.summary.histogram(‘weights‘,weight) 
tf.summary.histogram(‘bias‘,bias)
  • 3.合并变量
merged = tf.summary.merge_all()
  • 4.运行合并变量
summary = sess.run(merged)
  • 5.将 summary 写入事件文件
file_writer.add_summary(summary,i)

二、实例代码

import os
os.environ[‘TF_CPP_MIN_LOG_LEVEL‘] = ‘2‘
import tensorflow as tf
def linear_regression():
    # 1.Prepare data
    X = tf.random_normal(shape=[100,1])
    y_true = tf.matmul(X,[[0.8]]) + 0.7
    # Construct weights and bias, use variables to create
    weight = tf.Variable(initial_value=tf.random_normal(shape=[1,1]))
    bias = tf.Variable(initial_value=tf.random_normal(shape=[1,1]))
    y_predict = tf.matmul(X,weight) + bias
    # 2.Construct loss function
    error = tf.reduce_mean(tf.square(y_predict-y_true))
    # 3.Optimization loss
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(error)
    # (2)Increase variable display, collect variables
    tf.summary.scalar(‘error‘,error)
    tf.summary.histogram(‘weights‘,weight)
    tf.summary.histogram(‘bias‘,bias)
    # (3)Increase variable display, merge variables
    merged = tf.summary.merge_all()
    # Initialize variables
    init = tf.global_variables_initializer()
    # Start conversation
    with tf.Session() as sess:
        # Run initialization variables
        sess.run(init)
        print(‘View model parameters before training: weight: %f, partial amount: %f, loss: %f‘%(weight.eval(),bias.eval(),error.eval()))
        # (1)Add variable display, create text events
        file_Writer = tf.summary.FileWriter(‘e:/events/test‘,graph=sess.graph)

        # Start training
        for i in range(100):
            sess.run(optimizer)
            print(‘View model parameters after training %d times: weight: %f, partial amount: %f, loss: %f‘%((i+1), weight.eval(), bias.eval(), error.eval()))
            # (4)Increase variable display, run merge variable
            summary = sess.run(merged)
            # (5)Write variables to event file
            file_Writer.add_summary(summary,i)

if __name__ == ‘__main__‘:
    linear_regression()

三、运行结果

技术图片

四、变量可视化

  • 1.打开 CMD ,输入命令:tensorboard --logdir="e:/events/test",结果如下:
    技术图片
  • 2.打开浏览器,输入http://localhost:6006/,结果如下:
    技术图片
    技术图片

在线性回归中添加变量显示

标签:mode   import   ima   tar   writer   cal   ons   shape   session   

原文地址:https://www.cnblogs.com/monsterhy123/p/13095852.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!