Don’t Stop Pretraining: Adapt Language Models to Domains and Tasks
这篇文章研究nlp 的pretrain模型用任务相关的数据进一步预训练效果会更好。结论比较符合直觉,甚至感觉不用研究都能得出这个结论。方法上作者用robert做实验,研究了计算机、医疗等4个领域的文本分布,并用一些文本分类任务作为评价指标 。然后作者还提出了一个向量化召回去扩充数据的方法。整体感觉并不是很创新
Language Models as Knowledge Bases?
bert等预训练模型不仅可以语言的表征,还能学习进行知识性的记忆
Practitioner’s Guide to Statistical Tests
采用蒙特卡洛的方法对CTR预估中的AB测试进行了分析,学习了蒙特卡洛方法的又一个应该。
Perturbed Masking: Parameter-free Probing for Analyzing and Interpreting BERT
参考科学空间的文章:https://spaces.ac.cn/archives/7476 。用训练好的BERT模型将句子的某些词替换成mask符号,可以得到词与词的相关关系,利用这种相关关系能进行分词、句法分析等工作,这表明bert对语言的语法层面进行了有效的建模。
Zero-Shot Learning in Modern NLP
对nlp中的零次学习进行了简单的介绍