码迷,mamicode.com
首页 > 其他好文 > 详细

【Pyecharts】20W条淘宝文胸商品评论数据可视化~

时间:2020-06-15 22:44:05      阅读:69      评论:0      收藏:0      [点我收藏+]

标签:err   zoom   output   lob   国际   collect   theme   概念   mst   

咳咳~不要怀疑,这是一个正经的可视化项目,而且附带一点科普??


数据来源

  • 数据来自爬虫获取,淘宝约50个文胸商品的20W条评论数据~

  • 数据源来自chenjiandongx/cup-size


前言

对于很多只知道A/B/C的绅士们,我们在看数据之前可能先得了解点知识~

首先我们得先了解两个概念——上胸围 & 下胸围,具体看示意图:

技术图片

通过上胸围与下胸围的差值,我们就可以确定罩杯的大小了,具体的对应关系可参考下图:

技术图片

有了下胸围 & 罩杯就能确定文胸对应的尺码了~
当然这又有分为英式尺码和国际尺码,具体参考下图:

技术图片

好了,接下俩就可以开始我们的可视化了~


依赖模块

from pyecharts.charts import *
from pyecharts import options as opts
from pyecharts.commons.utils import JsCode
from collections import Counter
import re
import pandas as pd
import jieba
import jieba.posseg as psg
from stylecloud import gen_stylecloud
from IPython.display import Image

数据处理

原始数据是txt格式,为了方便处理,这边转为Dataframe~

尺码部分通过正则表达式提取出对应的下胸围和罩杯,具体代码如下:

patterns = re.compile(r‘(?P<datetime>.*),颜色分类:(?P<color>.*?);尺码:(?P<size>.*?),(?P<comment>.*)‘)

with open(‘/home/kesci/input/cup6439/cup_all.txt‘, ‘r‘) as f:
    data = f.readlines()

obj_list = []
for item in data:
    obj = patterns.search(item)
    obj_list.append(obj.groupdict())
    
data = pd.DataFrame(obj_list)
data = pd.concat([data, data[‘size‘].str.extract(‘(?P<circumference>[7-9]{1}[0|5]{1}).*(?P<cup>[a-zA-Z])‘, 
                                          expand=True)], axis=1)
data.head()

技术图片


商品类别

我们通过jieba分词来看看商品分类中最常出现的是哪些关键词~

  • 代码:
w_all = []
for item in data.color:
    w_l = psg.cut(item)
    w_l = [w for w, f in w_l if f in (‘n‘, ‘nr‘) and len(w)>1]
    w_all.extend(w_l)

c = Counter(w_all)

counter = c.most_common(50)

bar = (Bar(init_opts=opts.InitOpts(theme=‘purple-passion‘, width=‘1000px‘, height=‘800px‘))
       .add_xaxis([x for x, y in counter[::-1]])
       .add_yaxis(‘出现次数‘, [y for x, y in counter[::-1]], category_gap=‘30%‘)
       .set_global_opts(title_opts=opts.TitleOpts(title="出现最多的关键词",
                                                  pos_left="center",
                                                  title_textstyle_opts=opts.TextStyleOpts(font_size=20)),
                        datazoom_opts=opts.DataZoomOpts(range_start=70, range_end=100, orient=‘vertical‘),
                        visualmap_opts=opts.VisualMapOpts(is_show=False, max_=6e4, min_=3000, dimension=0,
                                range_color=[‘#f5d69f‘, ‘#f5898b‘, ‘#ef5055‘]),
                        legend_opts=opts.LegendOpts(is_show=False),
                        xaxis_opts=opts.AxisOpts(is_show=False,),
                        yaxis_opts=opts.AxisOpts(axistick_opts=opts.AxisTickOpts(is_show=False),
                                                 axisline_opts=opts.AxisLineOpts(is_show=False)))
       .set_series_opts(label_opts=opts.LabelOpts(is_show=True,
                                                  position=‘right‘,
                                                  font_style=‘italic‘),
                        itemstyle_opts={"normal": {
                                                    "barBorderRadius": [30, 30, 30, 30],
                                                    ‘shadowBlur‘: 10,
                                                    ‘shadowColor‘: ‘rgba(120, 36, 50, 0.5)‘,
                                                    ‘shadowOffsetY‘: 5,
                                                }
                                       }
).reversal_axis())

bar.render_notebook()

技术图片


  • 颜色:肤色 > 黑色 > 粉色 > 白色;
  • 薄款 > 厚款;
  • 钢圈似乎是个比较重要的卖点;

尺码分布

  • 代码:
t_data = data.groupby([‘circumference‘, ‘cup‘])[‘datetime‘].count().reset_index()
t_data.columns = [‘circumference‘, ‘cup‘, ‘num‘]
#t_data.num = round(t_data.num.div(t_data.num.sum(axis=0), axis=0) * 100, 1)

data_pair = [
            {"name": ‘A‘,
              "label":{"show": True},
              "children": []},
            {"name": ‘B‘,
              "label":{"show": True},
              "children": []},
            {"name": ‘C‘,
              "label":{"show": True},
              ‘shadowBlur‘: 10,
              ‘shadowColor‘: ‘rgba(120, 36, 50, 0.5)‘,
              ‘shadowOffsetY‘: 5,
              "children": []},
            {"name": ‘D‘,
              "label":{"show": False},
              "children": []},
            {"name": ‘E‘,
              "label":{"show": False},
              "children": []}
    ]

for idx, row in t_data.iterrows():
    t_dict = {"name": row.cup,
              "label":{"show": True},
              "children": []}
    if row.num > 3000:
        child_data = {"name": ‘{}-{}‘.format(row.circumference, row.cup), "value":row.num, "label":{"show": True}}
    else:
        child_data = {"name": ‘{}-{}‘.format(row.circumference, row.cup), "value":row.num, "label":{"show": False}}
    if row.cup == "A":
        data_pair[0][‘children‘].append(child_data)   
    elif row.cup == "B":
        data_pair[1][‘children‘].append(child_data)   
    elif row.cup == "C":
        data_pair[2][‘children‘].append(child_data)  
    elif row.cup == "D":
        data_pair[3][‘children‘].append(child_data)  
    elif row.cup == "E":
        data_pair[4][‘children‘].append(child_data)  


c = (Sunburst(
        init_opts=opts.InitOpts(
            theme=‘purple-passion‘,
            width="1000px",
            height="1000px"))
    .add(
        "",
        data_pair=data_pair,
        highlight_policy="ancestor",
        radius=[0, "100%"],
        sort_=‘null‘,
        levels=[
            {},
            {
                "r0": "20%",
                "r": "48%",
                "itemStyle": {"borderColor": ‘rgb(220,220,220)‘, "borderWidth": 2}
            },
            {"r0": "50%", "r": "80%", "label": {"align": "right"},
                "itemStyle": {"borderColor": ‘rgb(220,220,220)‘, "borderWidth": 1}}
        ],
    )
    .set_global_opts(
        visualmap_opts=opts.VisualMapOpts(is_show=False, max_=90000, min_=3000, 
                                range_color=[‘#f5d69f‘, ‘#f5898b‘, ‘#ef5055‘]),
        title_opts=opts.TitleOpts(title="文 胸\n\n尺 码 分 布",
                                               pos_left="center",
                                               pos_top="center",
                                               title_textstyle_opts=opts.TextStyleOpts(font_style=‘oblique‘, font_size=30),))
    .set_series_opts(label_opts=opts.LabelOpts(font_size=18, formatter="{b}: {c}"))
)

c.render_notebook()

技术图片


  • 单看罩杯的话:B > A > C
  • 细分到具体尺码:75B > 80B > 75A > 70A

罩杯分布

我们通过不同的胸围来看看罩杯的比例:

  • 代码:
grid = Grid(init_opts=opts.InitOpts(theme=‘purple-passion‘, width=‘1000px‘, height=‘1000px‘))


for idx, c in enumerate([‘70‘, ‘75‘, ‘80‘, ‘85‘, ‘90‘, ‘95‘]):
    
    if idx % 2 == 0:
        x = 30
        y = int(idx/2) * 30 + 20
    else:
        x = 70
        y = int(idx/2) * 30 + 20

    pos_x = str(x)+‘%‘
    pos_y = str(y)+‘%‘
    
    pie = Pie(init_opts=opts.InitOpts())
    
    pie.add(
            c,
            [[row.cup, row.num]for i, row in t_data[t_data.circumference==c].iterrows()],
            center=[pos_x, pos_y],
            radius=[70, 100],
            label_opts=opts.LabelOpts(formatter=‘{b}:{d}%‘),
    )
    
    pie.set_global_opts(
        title_opts=opts.TitleOpts(title="下胸围={}".format(c),
                                  pos_top=str(y-1)+‘%‘, pos_left=str(x-4)+‘%‘,
                                  title_textstyle_opts=opts.TextStyleOpts(font_size=15)),
        legend_opts=opts.LegendOpts(is_show=True))
    grid.add(pie,grid_opts=opts.GridOpts(pos_left=‘20%‘))

grid.render_notebook()

技术图片


  • 下胸围=70:A > B > C
  • 下胸围=75:B > A > C
  • 下胸围=80:B > A > C
  • 下胸围=85:B > C > A
  • 下胸围=90:C > B > A
  • 下胸围=95:C > B > D

评论词云

最后我们来看看评论中经常说到的是什么词语吧~

  • 代码:
w_all = []
for item in data.comment:
    w_l = jieba.lcut(item)
    w_all.extend(w_l)

c = Counter(w_all)


gen_stylecloud(‘ ‘.join(w_all),
              size=1000,
              #max_words=1000,
              font_path=‘/home/kesci/work/font/simhei.ttf‘,
              #palette=‘palettable.tableau.TableauMedium_10‘,
              icon_name=‘fas fa-heartbeat‘,
              output_name=‘comment.png‘,
              custom_stopwords=[‘没有‘,‘用户‘,‘填写‘,‘评论‘]
              )

Image(filename=‘comment.png‘)

技术图片


【Pyecharts】20W条淘宝文胸商品评论数据可视化~

标签:err   zoom   output   lob   国际   collect   theme   概念   mst   

原文地址:https://www.cnblogs.com/awesometang/p/13138226.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!