标签:blog http io ar sp for on 2014 art
/* 题意:给你一些边,每条边有一个值和一个运算符XOR OR AND求是否存在一些点使得所有的边根据这些运算符 可以符合条件的权值. 建边方式参考:http://blog.csdn.net/shuangde800/article/details/8876533 这种建边方式真好,以后就用这种了 0 -- 1 0 -- 0 1 -- 0 1 -- 1 根据预算符有矛盾就建两条边 因为这题中的c只有两种取值0,1,所以只需要计算一次就可以了 */ #include<stdio.h> #include<string.h> #include<stdlib.h> #include<algorithm> using namespace std; #define N 2100 #define NN 1100000 struct node { int u,v,w,next; char s[5]; }bian[NN*8]; int head[N],yong,low[N],dfn[N],belong[N],ans,top,index,stac[N],vis[N]; void init() { memset(head,-1,sizeof(head)); yong=index=ans=top=0; memset(vis,0,sizeof(vis)); memset(dfn,0,sizeof(dfn)); } void addedge(int u,int v) { bian[yong].v=v; bian[yong].next=head[u]; head[u]=yong++; } void tarjan(int u) { low[u]=dfn[u]=++index; stac[++top]=u; vis[u]=1; int i; for(i=head[u];i!=-1;i=bian[i].next) { int v=bian[i].v; if(!dfn[v]) { tarjan(v); low[u]=min(low[u],low[v]); } else if(vis[v]) low[u]=min(low[u],dfn[v]); } if(low[u]==dfn[u]){ ans++; int t; do { t=stac[top--]; belong[t]=ans; vis[t]=0; }while(t!=u); } } int slove(int n) { int i; for(i=0;i<n;i++) if(!dfn[i]) tarjan(i); // printf("%d\n",ans); for(i=0;i<n;i++) if(belong[i]==belong[i+n]) return 0; return 1; } int main(){ int n,m,i,u,v,w; char s[5]; while(scanf("%d%d",&n,&m)!=EOF) { init(); for(i=0;i<m;i++) { scanf("%d%d%d%s",&u,&v,&w,s); if(strcmp(s,"AND")==0) { if(w) { addedge(u,v);addedge(v+n,u+n);//1,0 addedge(u+n,v+n);addedge(v,u);//0,1 addedge(u+n,v);addedge(v+n,u);//0,0 } else { addedge(u,v+n);addedge(v,u+n); } } if(strcmp(s,"OR")==0) { if(w) { addedge(u+n,v); addedge(v+n,u); } else { addedge(u,v);addedge(v+n,u+n);//1,0 addedge(u+n,v+n);addedge(v,u);//0,1 addedge(u,v+n);addedge(v,u+n);//1,1 } } if(strcmp(s,"XOR")==0) { if(w) { addedge(u+n,v);addedge(v+n,u);//0,0 addedge(u,v+n);addedge(v,u+n);//1,1 } else { addedge(u,v);addedge(v+n,u+n);//1,0 addedge(u+n,v+n);addedge(v,u);//0,1 } } } if(slove(n)) printf("YES\n"); else printf("NO\n"); } return 0;}
poj 3678 XOR和OR和AND(简单2-sat问题)
标签:blog http io ar sp for on 2014 art
原文地址:http://blog.csdn.net/u011483306/article/details/40948493