码迷,mamicode.com
首页 > 其他好文 > 详细

区间DP之凸多边形的三角剖分

时间:2020-06-23 21:10:18      阅读:46      评论:0      收藏:0      [点我收藏+]

标签:else   凸多边形   思路   部分   clu   main   def   max   for   

题目

给定一具有N个顶点(从1到N编号)的凸多边形,每个顶点的权均已知。问如何把这个凸多边形划分成N-2个互不相交的三角形,使得这些三角形顶点的权的乘积之和最小?

输入

第一行 顶点数N(N<50)。 第二行 N个顶点(从1到N)的权值,权值为小于32768的整数。

输出

第一行为各三角形顶点的权的乘积之和最小值。

样例

样例输入

5
121 122 123 245 231

样例输出

12214884

思路

我们可以假设某个三角形在最优解的情况下,那么在遍历长度的情况下,枚举左端点,从而推出右端点,进而枚举断电,将整个凸多边形分成三部分,即f[i][j]=min(f[i][j],f[i][k]+f[k][j]+a[k]a[i]a[j]),从而求出最小价值(需要注意的是当发f[i][j]==0时,应当直接取后者值)

代码



#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=50+5;
int n;
ll a[maxn],f[maxn][maxn];
int main(){
	//freopen("1.in","r",stdin);
	scanf("%d",&n);
	for(int i=1;i<=n;++i)scanf("%lld\n",&a[i]);
	for(int i=1;i+2<=n;++i)f[i][i+2]=a[i]*a[i+1]*a[i+2];
	for(int d=3;d<=n;++d){
		for(int i=1;i+d-1<=n;++i){
			int j=i+d-1;
			for(int k=i+1;k<j;++k){
				if(f[i][j])f[i][j]=min(f[i][j],f[i][k]+f[k][j]+a[k]*a[i]*a[j]);
				else f[i][j]=f[i][k]+f[k][j]+a[k]*a[i]*a[j];
			}
		}
	}
	printf("%lld\n",f[1][n]);
	return 0;
}

区间DP之凸多边形的三角剖分

标签:else   凸多边形   思路   部分   clu   main   def   max   for   

原文地址:https://www.cnblogs.com/soda-ma/p/13184285.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!