标签:style blog io 使用 for div on 2014 log
多项式相加运算,使用链表实现,代码仍需要改善,这里先初步做个记录
//实现多项式的表示及相加 by Denis #include <stdio.h> #include <malloc.h> #define ture 1 #define false 0 typedef int ElemType; typedef struct LNode{ ElemType coef; //系数 int expn; //指数 struct LNode *next; }polynomia; polynomia *CreatPolyn(int nLength) //m 表示多项式的项数 { int i; polynomia *Ln_Head,*Ln_tmp1,*Ln_tmp2; printf("Creat a polynomia that have %d term\nPlease input the coef and expn for every term\n",nLength); Ln_Head = (polynomia *)malloc(sizeof(polynomia)); Ln_tmp1 = Ln_Head; /*Save the Head pointor*/ for(i=0;i<nLength;i++) { Ln_tmp2 = (polynomia *)malloc(sizeof(polynomia)); scanf("%d %d",&(Ln_tmp2->coef), &(Ln_tmp2->expn));//Input the data //Insert the data to the end odf list Ln_tmp1->next = Ln_tmp2; Ln_tmp1 = Ln_tmp2; Ln_tmp2->next = NULL; } return Ln_Head; } //Insert a term to polynomia int ListInsert(polynomia *Head, ElemType coef, int expn) { polynomia *P, *Tail; P = Head->next; //Get the tail pointor of the list while(P->next) { P = P->next; } Tail = P; P = (polynomia *)malloc(sizeof(polynomia)); P->coef = coef; P->expn = expn; Tail->next = P; P->next = NULL; //ListLength++; return 0; } //Get the how many term in the polynomia int ListLength(polynomia *Head) { int length=0; polynomia *P; P = Head->next; while(P) { length++; P = P->next; } return length; } //Get the number i data ,and return the pointor //i must be >0,and <= List's length polynomia *GetElem(polynomia *Head, int i) { int j=0; polynomia *P, *tmp; P = Head->next; while(P && j!=i) { tmp = P;//Save the P P = P->next; j++; } return tmp; } polynomia *LocateElem(polynomia *Head, ElemType E) { polynomia *P; P = Head->next; while(P) { if(P->expn== E)//E is in the list return P; else P = P->next; } return false;//E is not in the list } //Union the polynomia_1 and polynomia_2 polynomia *AddPolyn(polynomia *Head1, polynomia *Head2) { int L1_len = ListLength(Head1); int L2_len = ListLength(Head2);//计算多项式的项数 ElemType E1=Head1->next->expn; ElemType E2=Head2->next->expn; int i=1, j=1; polynomia *Tmp_1, *Tmp_2; Tmp_1 = Head1->next; Tmp_2 = Head2->next; printf("Union list_1 and list_2\n"); for(i=1; i<=L2_len; i++) { Tmp_2 = GetElem(Head2,i);//获取L2中的第i个元素,并获取该元素地址,打算查看是否该元素在L1中出现 if(!LocateElem(Head1,Tmp_2->expn))//如果元素不在L1中,则插入该元素 ListInsert(Head1,Tmp_2->coef, Tmp_2->expn); else//否则,存在相同指数项的元素,元素系数相加 { Tmp_1 = LocateElem(Head1,Tmp_2->expn); Tmp_1->coef = Tmp_2->coef + Tmp_1->coef; //if(Tmp_1->coef == 0)//系数为0的时候,略过该项 // Tmp_1 = Tmp_1->next; } } return Head1; } void PrintPolyn(polynomia *Head) { polynomia *P= Head->next; int i=0; printf("The polynomia is:\n F(X) = "); while(P) { if(P->coef == 0)//系数为0时,跳过该项 { P=P->next; } if(i == 0) { //如果系数为 1或者-1,则不显示1 if(P->coef == 1) { printf("X^%d", P->expn); i++; } if(P->coef == -1) { printf("-X^%d", P->expn); i++; } else { printf("%d*X^%d",P->coef, P->expn); i++; } } else { if(P->coef > 0 && P->coef!=1) printf(" + %d*X^%d",P->coef, P->expn); if(P->coef < 0 && P->coef!= -1) printf("%d*X^%d",P->coef, P->expn); //如果系数为 1或者-1,则不显示1 if(P->coef == 1) printf("+X^%d", P->expn); if(P->coef == -1) printf("-X^%d", P->expn); } P = P->next; } printf("\n"); } void main() { polynomia *Polyn_1, *Polyn_2, *Polyn_3; Polyn_1 = CreatPolyn(2); PrintPolyn(Polyn_1); //ListInsert(Polyn_1,10,10); // PrintPolyn(Polyn_1); Polyn_2 = CreatPolyn(2); Polyn_3 = AddPolyn(Polyn_1, Polyn_2); PrintPolyn(Polyn_3); getch(); }
标签:style blog io 使用 for div on 2014 log
原文地址:http://blog.csdn.net/denyz/article/details/40960277