标签:bool 奇数 pre math names isp fprintf def 元组
https://atcoder.jp/contests/nikkei2019-2-qual/tasks/nikkei2019_2_qual_e
给出 \(N\) 和 \(K\) .
判断对于这 \(3N\) 个数 \(K,K+1,\cdots,K+3N-1\) .是否存在一种将它们分为 \(N\) 个三元组 \((a_i,b_i,c_i)\) 的方案,且满足每个数恰好出现一次,且
判断是否存在方案,若不存在,输出 \(-1\) .否则输出一组方案
\(1 \le N \le 10^5\)
\(1 \le K \le 10^9\)
假设存在方案,那么满足
那么当 \(N<2K-1\) 时则无解,否则考虑构造方案.
当 \(N\) 为奇数时,设 \(N=2L-1\) 则有 \(K \le L\) ,那么
主要思想为将 \((a,b)\) 以 \((x+y),(x+2,y-1),\cdots\) 的顺序安排以达到每次和增加 \(1\) 的效果.
\(N\) 为偶数时类似的构造即可.
#include <cstdio>
#include <iostream>
#define debug(...) fprintf(stderr, __VA_ARGS)
using namespace std;
const int maxn = 1e5 + 50;
int N, K;
int a[maxn], b[maxn], c[maxn];
bool sol()
{
if (N < (K << 1) - 1) return 0;
if (N & 1)
{
int L = (N + 1) >> 1;
int cnt = 0;
for (int i = K; i <= K + 2 * L - 2; i += 2)
a[++cnt] = i;
for (int i = K + 1; i <= K + 2 * L - 3; i += 2)
a[++cnt] = i;
cnt = 0;
for (int i = K + 3 * L - 2; i >= K + 2 * L - 1; --i)
b[++cnt] = i;
for (int i = K + 4 * L - 3; i >= K + 3 * L - 1; --i)
b[++cnt] = i;
cnt = 0;
for (int i = K + 4 * L - 2; i <= K + 6 * L - 4; ++i)
c[++cnt] = i;
}
else
{
int L = N >> 1;
int cnt = 0;
for (int i = K; i <= K + 2 * L - 2; i += 2)
a[++cnt] = i;
for (int i = K + 1; i <= K + 2 * L - 1; i += 2)
a[++cnt] = i;
cnt = 0;
for (int i = K + 3 * L - 1; i >= K + 2 * L; --i)
b[++cnt] = i;
for (int i = K + 4 * L - 1; i >= K + 3 * L; --i)
b[++cnt] = i;
cnt = 0;
for (int i = K + 4 * L; i <= K + 6 * L; ++i)
c[++cnt] = i;
}
for (int i = 1; i <= N; ++i)
printf("%d %d %d\n", a[i], b[i], c[i]);
return 1;
}
int main()
{
scanf("%d%d", &N, &K);
if (!sol())
puts("-1");
return 0;
}
nikkei2019_2_qual_e Non-triangular Triplets
标签:bool 奇数 pre math names isp fprintf def 元组
原文地址:https://www.cnblogs.com/ljzalc1022/p/13191037.html