标签:span none 前一行 返回 rank tag http 标签 sorted
开窗函数的理解参见: 理解hive中的开窗函数
over()
中除了可以使用partition by
选择分组字段外, 还有以下函数
order by
排序order by
使用
current row
: 当前行n PRECEDING
: 往前 n 行数据n FOLLOWING
: 往后 n 行数据UNBOUNDED PRECEDING
表示从前面的起点UNBOUNDED FOLLOWING
表示到后面的终点LAG(col,n)
: 往后第 n 行数据LEAD(col,n)
: 往前第 n 行数据NTILE(n)
: 把有序分区中的行分发到指定数据的组中, 各个组有编号, 编号从 1 开始,对于每一行, NTILE 返回此行所属的组的编号。 注意: n 必须为 int 类型。Rank
RANK()
排序相同时会重复, 总数不会变DENSE_RANK()
排序相同时会重复, 总数会减少ROW_NUMBER()
会根据顺序计算 order by
排序
hive (default)> select name,orderdate,cost, sum(cost) over(partition by name) as sample from business;
name orderdate cost sample
jack 2017-01-01 10 176
jack 2017-02-03 23 176
jack 2017-01-05 46 176
jack 2017-04-06 42 176
jack 2017-01-08 55 176
mart 2017-04-13 94 299
mart 2017-04-08 62 299
mart 2017-04-09 68 299
mart 2017-04-11 75 299
hive (default)> select name,orderdate,cost, sum(cost) over(partition by name order by orderdate) as sample3 from business;
name orderdate cost sample3
jack 2017-01-01 10 10
jack 2017-01-05 46 56
jack 2017-01-08 55 111
jack 2017-02-03 23 134
jack 2017-04-06 42 176
mart 2017-04-08 62 62
mart 2017-04-09 68 130
mart 2017-04-11 75 205
mart 2017-04-13 94 299
rows between UNBOUNDED PRECEDING and CURRENT ROW
从起行到当前行的聚合, 而不是对行组内的所有行进行聚合, 配合order by
使用
hive (default)> select name,orderdate,cost, sum(cost) over(partition by name order by orderdate rows between UNBOUNDED PRECEDING and current row ) as sample from business;
name orderdate cost sample
jack 2017-01-01 10 10
jack 2017-01-05 46 56
jack 2017-01-08 55 111
jack 2017-02-03 23 134
jack 2017-04-06 42 176
mart 2017-04-08 62 62
mart 2017-04-09 68 130
mart 2017-04-11 75 205
mart 2017-04-13 94 299
neil 2017-05-10 12 12
neil 2017-06-12 80 92
tony 2017-01-02 15 15
tony 2017-01-04 29 44
tony 2017-01-07 50 94
rows between 1 PRECEDING and current row
将上一行与本行聚合, 而不是将行组内所有行聚合
hive (default)> select name,orderdate,cost, sum(cost) over(partition by name order by orderdate rows between 1 PRECEDING and current row) as sample from business;
jack 2017-01-01 10 10
jack 2017-01-05 46 56
jack 2017-01-08 55 101
jack 2017-02-03 23 78
jack 2017-04-06 42 65
mart 2017-04-08 62 62
mart 2017-04-09 68 130
mart 2017-04-11 75 143
mart 2017-04-13 94 169
neil 2017-05-10 12 12
neil 2017-06-12 80 92
tony 2017-01-02 15 15
tony 2017-01-04 29 44
tony 2017-01-07 50 79
当前行和前一行及后面一行聚合
当前行及后面所有行
当前行及后面所有行
LAG(col, n)
第三个参数用于代替"NLL"
select
name,orderdate,cost,
lag(orderdate,1,‘1900-01-01‘) over(partition by name order by orderdate ) as time1,
lag(orderdate,2) over (partition by name order by orderdate) as time2
from
business;
结果: time1将orderdate列往后移一行, time2往后移两行
name orderdate cost time1 time2
jack 2017-01-01 10 1900-01-01 NULL
jack 2017-01-05 46 2017-01-01 NULL
jack 2017-01-08 55 2017-01-05 2017-01-01
jack 2017-02-03 23 2017-01-08 2017-01-05
jack 2017-04-06 42 2017-02-03 2017-01-08
mart 2017-04-08 62 1900-01-01 NULL
mart 2017-04-09 68 2017-04-08 NULL
mart 2017-04-11 75 2017-04-09 2017-04-08
mart 2017-04-13 94 2017-04-11 2017-04-09
neil 2017-05-10 12 1900-01-01 NULL
neil 2017-06-12 80 2017-05-10 NULL
tony 2017-01-02 15 1900-01-01 NULL
tony 2017-01-04 29 2017-01-02 NULL
tony 2017-01-07 50 2017-01-04 2017-01-02
LEAD(col, n)
同时, 只是往前移指定的行数
NTILE(n)
需要配合order by
使用
select * from (
select
name,orderdate,cost,
ntile(5) over() sorted
from
business
) t;
结果: ntitle(5)
, 增加一列(组标签), 用于分组, 这里为5组
t.name t.orderdate t.cost t.sorted
jack 2017-01-01 10 1
tony 2017-01-02 15 1
jack 2017-02-03 23 1
tony 2017-01-04 29 2
jack 2017-01-05 46 2
jack 2017-04-06 42 2
tony 2017-01-07 50 3
jack 2017-01-08 55 3
mart 2017-04-08 62 3
mart 2017-04-09 68 4
neil 2017-05-10 12 4
mart 2017-04-11 75 4
neil 2017-06-12 80 5
mart 2017-04-13 94 5
如果分组是行数数以n有余数, 则从上到下每组增加一行, 直到所以行都有组标签.
rank
RANK() 排序相同时会重复, 总数不会变
DENSE_RANK() 排序相同时会重复, 总数会减少
ROW_NUMBER() 会根据顺序计算
select name,
subject,
score,
rank() over(partition by subject order by score desc) rp,
dense_rank() over(partition by subject order by score desc) drp,
row_number() over(partition by subject order by score desc) rmp
from score;
name subject score rp drp rmp
sk 数学 95 1 1 1
zs 数学 86 2 2 2
ls 数学 85 3 3 3
ww 数学 56 4 4 4
zs 英语 84 1 1 1
ww 英语 84 1 1 2
ls 英语 78 3 2 3
sk 英语 68 4 3 4
ww 语文 94 1 1 1
sk 语文 87 2 2 2
ls 语文 65 3 3 3
zs 语文 64 4 4 4
标签:span none 前一行 返回 rank tag http 标签 sorted
原文地址:https://www.cnblogs.com/bitbitbyte/p/13192929.html