标签:图像 gauss 转换图像 bin 常见 nis ddl filter 运算
与对齐类似,可能需要校正图像,例如消除镜头畸变或转换图像的参考点。
下一个重要部分是图像的预处理。在这里,像mean_image或gauss_filter这样的运算符可用于消除噪音。一个快速但不太完美的替代方案是binomial_filter。运算符middle_image对于抑制小斑点或细线很有用。算子anisotropic_diffusion(各向异性扩散)对保留边缘的平滑很有用,最后使用fill_interlace消除由隔行交错相机(摄像机视频流图像)引起的缺陷
代替使用固定的阈值,可以为每个图像动态提取它们。例如具有多个峰值的灰度值直方图,每个对象类别一个。在这里,您可以使用算子gray_histo_abs和histo_to_thresh。作为高级替代方案,可以将算子intensity与参考图像结合使用,仅适用于背景:在设置过程中,将确定背景区域的平均灰度值。如果平均灰度值已更改,则可以相应调整阈值。
对于分割,可以使用各种方法。最简单的方法是threshold(阈值),指定一个属于前景对象的值范围。另一个非常常见的方法是dyn_threshold。在此,第二张图像将作为参考图像。通过这种方法,使用局部阈值而不是全局阈值。这些局部阈值存储在参考图像中。可以通过拍摄空背景图片将其设为静态作为参考图像,也可以使用平滑滤镜(例如mean_image)
标签:图像 gauss 转换图像 bin 常见 nis ddl filter 运算
原文地址:https://www.cnblogs.com/yujsjfll/p/13194736.html