码迷,mamicode.com
首页 > 其他好文 > 详细

(2020.6.26)GNN预训练

时间:2020-06-26 18:35:04      阅读:114      评论:0      收藏:0      [点我收藏+]

标签:https   模型   ota   training   效果   ini   rap   for   论文   

今天读到一篇KDD2020的论文,感觉很有启发,BERT的预训练在NLP领域已经很成功了,但在图嵌入领域还没有成功的预训练,这篇文章就解决了这个问题。

GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training
代码:https://github.com/THUDM/GCC
从这篇文章的结果来看,预训练确实给模型的鲁棒性带来了很大的提升,应该可以作为以后图嵌入任务的强基线模型了。

文中使用的GNN模型是GIN,对应这篇论文:HOW POWERFUL ARE GRAPH NEURAL NETWORKS?
虽然有些实验结果GIN效果更好,但是文中说GIN是在不同的超参数下获得的更好的效果,对于统一的超参数GCC更稳定。

如果说存在的问题的话,就是不确定什么时候应该选择哪种策略,因为光从实验结果来看,freeze和full、E2E和MoCo都有各自SOTA的结果。另一方面,GCC无法表示节点属性,且无法表示关系类型。应该算是以后的改进点。

(2020.6.26)GNN预训练

标签:https   模型   ota   training   效果   ini   rap   for   论文   

原文地址:https://www.cnblogs.com/sqlkrad/p/13195718.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!