3 1 2 3 7 13 7 8 16 21 4 18
9 239
解题:dp...其实就是把这条直线先化成长度为1的一段一段一段的,然后化成长度为2的一段一段的。。。。。。。。最优子结构。。。。拼出0-n-1的最优解
我的代码:
# include <stdio.h> # include <string.h> # define INF 100000000 # define min(a,b)a<b?a:b int main(void) { int sum[210],add,n,i,j,v,k,dp[210][210],c[210]; while (~scanf("%d", &n)) { memset(dp, 0, sizeof(dp)); sum[0] = 0; for (i = 1; i <= n; i++) { scanf("%d", &c[i]); sum[i] = sum[i-1] + c[i]; } for (v = 1; v < n; v++) for (i = 1; i <= n - v; i++) { j = v + i; dp[i][j] = INF; add = sum[j] - sum[i - 1]; for (k = i; k < j; k++) dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j] + add); } printf("%d\n", dp[1][n]); } return 0; } 最优代码:
思路:设序列是stone[],从左往右,找一个满足stone[k-1] <= stone[k+1]的k,找到后合并stone[k]和stone[k-1],再从当前位置开始向左找最大的j,使其满足stone[j] > stone[k]+stone[k-1],插到j的后面就行。一直重复,直到只剩下一堆石子就可以了。在这个过程中,可以假设stone[-1]和stone[n]是正无穷的。
举个例子:186 64 35 32 103因为35<103,所以最小的k是3,我们先把35和32删除,得到他们的和67,并向前寻找一个第一个超过67的数,把67插入到他后面,得到:186 67 64 103,现在由5个数变为4个数了,继续:186 131 103,现在k=2(别忘了,设A[-1]和A[n]等于正无穷大)234 186,最后得到420。最后的答案呢?就是各次合并的重量之和,即420+234+131+67=852。基本思想是通过树的最优性得到一个节点间深度的约束,之后证明操作一次之后的解可以和原来的解一一对应,并保证节点移动之后他所在的深度不会改变。具体实现这个算法需要一点技巧,精髓在于不停快速寻找最小的k,即维护一个“2-递减序列”朴素的实现的时间复杂度是O(n*n),但可以用一个平衡树来优化,使得最终复杂度为O(nlogn)。
#include <iostream> #include <string.h> #include <stdio.h> using namespace std; const int N = 50005; int stone[N]; int n,t,ans; void combine(int k) { int tmp = stone[k] + stone[k-1]; ans += tmp; for(int i=k;i<t-1;i++) stone[i] = stone[i+1]; t--; int j = 0; for(j=k-1;j>0 && stone[j-1] < tmp;j--) stone[j] = stone[j-1]; stone[j] = tmp; while(j >= 2 && stone[j] >= stone[j-2]) { int d = t - j; combine(j-1); j = t - d; } } int main() { while(scanf("%d",&n)!=EOF) { if(n == 0) break; for(int i=0;i<n;i++) scanf("%d",stone+i); t = 1; ans = 0; for( i=1;i<n;i++) { stone[t++] = stone[i]; while(t >= 3 && stone[t-3] <= stone[t-1]) combine(t-2); } while(t > 1) combine(t-1); printf("%d\n",ans); } return 0; }
原文地址:http://blog.csdn.net/java_oracle_c/article/details/40951573