题目描述:
Given n points
on a 2D plane, find the maximum number of points that lie on the same straight line.
解题思路:暴力求解。以每个点为中心,然后遍历剩余的点。对每个点,初始化一个map,以pair<dx,dy>为key(dx,dy为两点之间x坐标与y坐标的差除以他们的最大公约数之后得到的结果),value为直线上点的个数。一遍遍历结束后得到与当前i点共线的点的个数的最大值。将该得到的最大值与当前的最大值比较,如果比它大,则更新当前最大值。当每一点都遍历结束后,就能得到共线最多点的数目。
代码:
int Solution::maxPoints(vector<Point> &points) { int size = points.size(); int result = 0; if(size <= 2) return size; for(int i = 0;i < size;i++) { int vertical = 0; int samePoint = 0; int max_temp = 0; map<pair<int,int>,int> k; for(int j = 0;j < size;j++) { if(points[j].x == points[i].x && points[j].y == points[i].y) samePoint++; else if(points[j].x - points[i].x == 0) vertical++; else { int dx = points[i].x - points[j].x; int dy = points[i].y - points[j].y; int gcd = GCD(dx,dy); dx = dx/gcd; dy = dy/gcd; k[make_pair(dx,dy)]++; if(max_temp < k[make_pair(dx,dy)]) max_temp = k[make_pair(dx,dy)]; } if(vertical > max_temp) max_temp = vertical; } if((max_temp+samePoint+1)> result) result = max_temp; } return result; } int Solution::GCD(int a,int b) { if(b == 0) return a; else return GCD(b,a%b); }
原文地址:http://blog.csdn.net/yao_wust/article/details/40977199