标签:之间 bre 选择 memset lang code ems cstring sizeof
题意:树是一个无向联通的无环图,现在给你一棵树,你有三种不同的颜色1,2,3可以选择,你要把树上的每个点涂一种颜色,使得任何一条由三个不同的点构成的路(这一段路上只能有三个点,就是0-0-0),他们之间的颜色是不同的。现在给你三种颜色,每种颜色染每个点需要的花费。请你给出一种染色的方案,满足以上条件使总花费最小。
分析:我们可以发现,不合法的情况是一个点连了大于等于3个点,即存在一个点的度数是大于等于3的。然后我们可以发现整个树是一条链,意味着当我们确定两个相邻的点的颜色后,其它点的颜色可以根据这两个点的颜色全部推出,比如p1点为a颜色,p2点为b颜色,那么第三个点的颜色为6 - a - b,我们只要遍历一下树,就可以推出所有颜色值。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
using namespace std;
using LL = long long;
const int N = 100005;
int h[N], e[2 * N], ne[2 * N], idx;
int c[4][N];
int g[N], f[N];
int d[N];
void add(int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}
LL dfs(int u, int fa, int color)
{
g[u] = color;
LL cost = c[color][u];
for (int i = h[u]; i != -1; i = ne[i])
{
int j = e[i];
if (j == fa) continue;
cost += dfs(j, u, 6 - g[u] - g[fa]);
}
return cost;
}
LL cal(int a, int b)
{
LL cost = 0;
g[1] = a;
cost += c[a][1];
int p2;
for (int i = h[1]; i != -1; i = ne[i])
{
int j = e[i];
p2 = j;
cost += c[b][p2];
break;
}
g[p2] = b;
int p1 = 1;
for (int i = h[p1]; i != -1; i = ne[i])
{
int j = e[i];
if (j == p2) continue;
cost += dfs(j, p1, 6 - a - b);
}
for (int i = h[p2]; i != -1; i = ne[i])
{
int j = e[i];
if (j == p1) continue;
cost += dfs(j, p2, 6 - a - b);
}
return cost;
}
int main()
{
int n;
scanf("%d", &n);
for(int i = 1; i <= 3; ++i)
for (int j = 1; j <= n; ++j)
{
scanf("%d", &c[i][j]);
}
memset(h, -1, sizeof h);
int u, v;
for (int i = 1; i < n; ++i)
{
scanf("%d%d", &u, &v);
++d[u], ++d[v];
add(u, v), add(v, u);
}
bool flag = true;
for (int i = 1; i <= n; ++i)
{
if (d[i] >= 3)
{
flag = false;
break;
}
}
if (!flag)
{
cout << -1 << endl;
}
else
{
LL mx = 1e18;
for (int i = 1; i <= 3; ++i)
{
for (int j = 1; j <= 3; ++j)
{
if (j != i)
{
LL cost = cal(i, j);
if (mx > cost)
{
mx = cost;
for (int k = 1; k <= n; ++k)
f[k] = g[k];
}
}
}
}
cout << mx << endl;
for (int i = 1; i <= n; ++i)
cout << f[i] << " ";
}
return 0;
}
CodeForces 1244D. Paint the Tree
标签:之间 bre 选择 memset lang code ems cstring sizeof
原文地址:https://www.cnblogs.com/pixel-Teee/p/13232433.html