码迷,mamicode.com
首页 > 其他好文 > 详细

「POI2011」Lightning Conductor

时间:2020-07-03 21:46:14      阅读:46      评论:0      收藏:0      [点我收藏+]

标签:limits   就是   mat   sqrt   实现   max   也会   二分   math   

跟风 yuzhechuan 写个题解/kk

根据 yuzhechuan 的题解,这个东西其实就在求 \(f_i=\max\limits_{j=1}^n \{ a_j+\sqrt{|i-j|} \}-a_i\),正反取两边即可,改为求 \(f_i=\max\limits_{j=1}^i \{ a_j+\sqrt{i-j} \}-a_i\)

发现这个东西是满足决策单调性的

\(i\) 的决策点为 \(j\),发现这个 \(a_j+\sqrt{i-j}\) 其实是随着 \(i\) 的增加而增加的,也就是说如果 \(j\)\(i\) 的决策点的话,那么随着 \(i\) 的增加 \(a_j+\sqrt{i-j}\) 也会增加,决策点前面的点就没有成为新的决策点的机会,那么就是满足决策单调性的。

至于怎么实现,可以用 单调队列 / 整体二分 来做

「POI2011」Lightning Conductor

标签:limits   就是   mat   sqrt   实现   max   也会   二分   math   

原文地址:https://www.cnblogs.com/limit-ak-ioi/p/13232524.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!