码迷,mamicode.com
首页 > 其他好文 > 详细

HDU-3698.Let the light guide us线段树优化DP

时间:2020-07-05 00:37:07      阅读:61      评论:0      收藏:0      [点我收藏+]

标签:node   play   ble   click   i+1   cst   ==   span   ring   

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3698

题目大意:给你$n\times m$的表格,你在每一行必须且只能放置一个塔,在每个格子建造塔的时间为$a[i][j]$,魔法范围为$mg[i][j]$,相邻两行的塔设为$(i,j)(i+1,k)$必须满足$|j-k|<=mg[i][j]+mg[i+1][k]$

Sample Input

3 5
9 5 3 8 7
8 2 6 8 9
1 9 7 8 6
0 1 0 1 2
1 0 2 1 1
0 2 1 0 2
0 0

Sample Output

10

emmm,最朴素的DP是很好想的,设置DP状态为dp[i][j]表示第i行在第j列放置塔的最小花费时间。然后每次寻找上一层合适的位置,这样一来复杂度为$O(NM^2)$,代码如下:

技术图片
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;

const int mac=5e3+10;
const int inf=1e9+10;

int dp[120][mac],time[120][mac],mg[120][mac];
//第i行在第j列建造的最优值

bool ok(int i,int j,int p,int k)
{
    return abs(j-k)<=mg[i][j]+mg[p][k];
}

int main()
{    
    int n,m;
    while (scanf ("%d%d",&n,&m)){
        if (!n && !m) return 0;
        for (int i=1; i<=n; i++)
            for (int j=1; j<=m; j++)
                scanf ("%d",&time[i][j]);
        for (int i=1; i<=n; i++)
            for (int j=1; j<=m; j++)
                scanf ("%d",&mg[i][j]);

        for (int i=1; i<=m; i++)
            dp[1][i]=time[1][i];
        for (int i=2; i<=n; i++){
            for (int j=1; j<=m; j++){
                dp[i][j]=inf;
                for (int k=1; k<=m; k++)
                    if (ok(i,j,i-1,k)) dp[i][j]=min(dp[i][j],dp[i-1][k]+time[i][j]);
            }
        }
        /*for (int i=1; i<=n; i++)
            for (int j=1; j<=m; j++)
                printf("%d%c",dp[i][j],j==m?‘\n‘:‘ ‘);*/

        int ans=inf;
        for (int i=1; i<=m; i++)
            ans=min(dp[n][i],ans);
        printf("%d\n",ans);
    }
    return 0;
}
View Code

注意到第x行每个位置辐射的范围为$(j-mg[x][j],j+mg[x][j])$,那么如果上一行中有范围和它重合,那么就构成了答案。我们要从上一层的每个范围进行覆盖并取最小值,那么很明显可以用线段树来做,也就是区间置换+求最小值。

emmmm,不过,似乎很久没写线段树了。。。QAQ卡了将近2小时的线段树BUG

以下是AC代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;

const int mac=5e3+10;
const int inf=1e9+10;
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1

int dp[120][mac],time[120][mac],mg[120][mac];
//第i行在第j列建造的最优值
struct node
{
    int val,f;
}tree[mac<<2];

void push_down(int rt)
{
    int lc=rt<<1,rc=rt<<1|1;
    tree[lc].f=min(tree[lc].f,tree[rt].f);
    tree[rc].f=min(tree[rc].f,tree[rt].f);
    if (tree[lc].val>tree[rt].f) 
        tree[lc].val=tree[rt].f;
    if (tree[rc].val>tree[rt].f)
        tree[rc].val=tree[rt].f;
    tree[rt].f=inf;
}

void push_up(int rt)
{
    int lc=rt<<1,rc=rt<<1|1;
    tree[rt].val=min(tree[lc].val,tree[rc].val);
}

void build(int l,int r,int rt)
{
    tree[rt].val=inf,tree[rt].f=inf;
    if (l==r) return;
    int mid=(l+r)>>1;
    build(lson);build(rson);
}

void update(int l,int r,int rt,int L,int R,int val)
{
    if (l>=L && r<=R){
        tree[rt].f=min(tree[rt].f,val);
        tree[rt].val=min(tree[rt].val,val);
        return;
    }
    if (tree[rt].f!=inf) push_down(rt);
    int mid=(l+r)>>1;
    if (mid>=L) update(lson,L,R,val);
    if (mid<R) update(rson,L,R,val);
    push_up(rt); 
}

int query(int l,int r,int rt,int L,int R)
{
    int ans=inf;
    if (l>=L && r<=R){
        return tree[rt].val;
    }
    if (tree[rt].f!=inf) push_down(rt);
    int mid=(l+r)>>1;
    if (mid>=L) ans=min(ans,query(lson,L,R));
    if (mid<R) ans=min(ans,query(rson,L,R));
    return ans;
}

int main()
{    
    int n,m;
    while (scanf ("%d%d",&n,&m)){
        if (!n && !m) return 0;
        for (int i=1; i<=n; i++)
            for (int j=1; j<=m; j++)
                scanf ("%d",&time[i][j]);
        for (int i=1; i<=n; i++)
            for (int j=1; j<=m; j++)
                scanf ("%d",&mg[i][j]);

        for (int i=1; i<=m; i++)
            dp[1][i]=time[1][i];
        for (int i=2; i<=n; i++){
            build(1,m,1);
            for (int j=1; j<=m; j++){
                update(1,m,1,max(1,j-mg[i-1][j]),min(m,j+mg[i-1][j]),dp[i-1][j]);
            }
            for (int j=1; j<=m; j++){
                dp[i][j]=inf;
                int s=query(1,m,1,max(1,j-mg[i][j]),min(m,j+mg[i][j]));
                dp[i][j]=min(dp[i][j],s+time[i][j]);
            }
        }
        int ans=inf;
        for (int i=1; i<=m; i++)
            ans=min(dp[n][i],ans);
        printf("%d\n",ans);
    }
    return 0;
}

HDU-3698.Let the light guide us线段树优化DP

标签:node   play   ble   click   i+1   cst   ==   span   ring   

原文地址:https://www.cnblogs.com/lonely-wind-/p/13237187.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!