标签:核心技术 理解 经验 表示 层次结构 体系架构 形式 graph --
今天老师开了个会,对毕设做了安排,老师推荐我们做知识图谱方面的内容,所以我去网上查阅了相关的资料,先进行了简单的了解。
人们想要机器可以像人一样进行逻辑分析,那么知识图谱就是旨在解决这一类问题。
通过对历史数据的处理,赋予机器处理信息的能力。
下面摘自知乎:https://zhuanlan.zhihu.com/p/71128505
知识图谱的架构主要包括自身的逻辑结构以及体系架构,
知识图谱在逻辑结构上可分为模式层与数据层两个层次,数据层主要是由一系列的事实组成,而知识将以事实为单位进行存储。如果用(实体1,关系,实体2)、(实体、属性,属性值)这样的三元组来表达事实,可选择图数据库作为存储介质,例如开源的 Neo4j、Twitter 的 FlockDB、JanusGraph 等。模式层构建在数据层之上,主要是通过本体库来规范数据层的一系列事实表达。本体是结构化知识库的概念模板,通过本体库而形成的知识库不仅层次结构较强,并且冗余程度较小。
知识图谱的体系架构是指其构建模式的结构,如下图所示:
大规模知识库的构建与应用需要多种智能信息处理技术的支持。通过知识抽取技术,可以从一些公开的半结构化、非结构化的数据中提取出实体、关系、属性等知识要素。通过知识融合,可消除实体、关系、属性等指称项与事实对象之间的歧义,形成高质量的知识库。知识推理则是在已有的知识库基础上进一步挖掘隐含的知识,从而丰富、扩展知识库。分布式的知识表示形成的综合向量对知识库的构建、推理、融合以及应用均具有重要的意义。
知识抽取
知识抽取主要是面向开放的链接数据,通过自动化的技术抽取出可用的知识单元,知识单元主要包括实体(概念的外延)、关系以及属性3个知识要素,并以此为基础,形成一系列高质量的事实表达,为上层模式层的构建奠定基础。知识抽取有三个主要工作:
知识表示
近年来,以深度学习为代表的表示学习技术取得了重要的进展,可以将实体的语义信息表示为稠密低维实值向量,进而在低维空间中高效计算实体、关系及其之间的复杂语义关联,对知识库的构建、推理、融合以及应用均具有重要的意义。一直在关注我们公众号的朋友肯定阅读过上一篇博文,graph embedding 就是一种表示学习。
知识融合
由于知识图谱中的知识来源广泛,存在知识质量良莠不齐、来自不同数据源的知识重复、知识间的关联不够明确等问题,所以必须要进行知识的融合。知识融合是高层次的知识组织,使来自不同知识源的知识在同一框架规范下进行异构数据整合、消歧、加工、推理验证、更新等步骤,达到数据、信息、方法、经验以及人的思想的融合,形成高质量的知识库。
其中,知识更新是一个重要的部分。人类的认知能力、知识储备以及业务需求都会随时间而不断递增。因此,知识图谱的内容也需要与时俱进,不论是通用知识图谱,还是行业知识图谱,它们都需要不断地迭代更新,扩展现有的知识,增加新的知识。
知识图谱为互联网上海量、异构、动态的大数据表达、组织、管理以及利用提供了一种更为有效的方式,使得网络的智能化水平更高,更加接近于人类的认知思维。
智能搜索
如同我们在开篇介绍的例子,用户的查询输入后,搜索引擎不仅仅去寻找关键词,而是首先进行语义的理解。比如,对查询分词之后,对查询的描述进行归一化,从而能够与知识库进行匹配。查询的返回结果,是搜索引擎在知识库中检索相应的实体之后,给出的完整知识体系。
深度问答
问答系统是信息检索系统的一种高级形式,能够以准确简洁的自然语言为用户提供问题的解答。多数问答系统更倾向于将给定的问题分解为多个小的问题,然后逐一去知识库中抽取匹配的答案,并自动检测其在时间与空间上的吻合度等,最后将答案进行合并,以直观的方式展现给用户。
苹果的智能语音助手 Siri 能够为用户提供回答、介绍等服务,就是引入了知识图谱的结果。知识图谱使得机器与人的交互,看起来更智能。
社交网络
Facebook 于 2013 年推出了 Graph Search 产品,其核心技术就是通过知识图谱将人、
地点、事情等联系在一起,并以直观的方式支持精确的自然语言查询,例如输入查询式:“我朋友喜欢的餐厅”“住在纽约并且喜欢篮球和中国电影的朋友”等,知识图谱会帮助用户在庞大的社交网络中
找到与自己最具相关性的人、照片、地点和兴趣等。Graph Search 提供的上述服务贴近个人的生活,满足了用户发现知识以及寻找最具相关性的人的需求。
垂直行业应用
从领域上来说,知识图谱通常分为通用知识图谱和特定领域知识图谱。
在金融、医疗、电商等很多垂直领域,知识图谱正在带来更好的领域知识、更低金融风险、更完美的购物体验。更多的,如教育科研行业、图书馆、证券业、生物医疗以及需要进行大数据分析的一些行业。这些行业对整合性和关联性的资源需求迫切,知识图谱可以为其提供更加精确规范的行业数据以及丰富的表达,帮助用户更加便捷地获取行业知识。
从技术来说,知识图谱的难点在于 NLP,因为我们需要机器能够理解海量的文字信息。但在工程上,我们面临更多的问题,来源于知识的获取,知识的融合。搜索领域能做的越来越好,是因为有成千上万(成百万上亿)的用户,用户在查询的过程中,实际也在优化搜索结果,这也是为什么百度的英文搜索不可能超过 Google,因为没有那么多英文用户。知识图谱也是同样的道理,如果将用户的行为应用在知识图谱的更新上,才能走的更远。
知识图谱肯定不是人工智能的最终答案,但知识图谱这种综合各项计算机技术的应用方向,一定是人工智能未来的形式之一。
那么如果我想要做这方面的毕设,那么我首先要解决数据的获取,老师也说确定选题,你先解决数据的问题,有那方面的数据再选,至于知识的抽取,融合,推理,表示,相信通过网络上资料的学习,可以了解到。
最后毕竟题目都没有确定,明天的任务,就先确定一下选题吧。
标签:核心技术 理解 经验 表示 层次结构 体系架构 形式 graph --
原文地址:https://www.cnblogs.com/my---world/p/13269499.html