标签:列表 数值 lsp drop pair 其他 转化 normal 指定
{{uploading-image-382865.png(uploading...)}}
第4章 变形
import numpy as np
import pandas as pd
df = pd.read_csv(‘data/table.csv‘)
df.head()
|
School |
Class |
ID |
Gender |
Address |
Height |
Weight |
Math |
Physics |
0 |
S_1 |
C_1 |
1101 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1 |
S_1 |
C_1 |
1102 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
2 |
S_1 |
C_1 |
1103 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
3 |
S_1 |
C_1 |
1104 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
4 |
S_1 |
C_1 |
1105 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
一、透视表
1. pivot
一般状态下,数据在DataFrame会以压缩(stacked)状态存放,例如上面的Gender,两个类别被叠在一列中,pivot函数可将某一列作为新的cols:
df.pivot(index=‘ID‘,columns=‘Gender‘,values=‘Height‘).head()
Gender |
F |
M |
ID |
|
|
1101 |
NaN |
173.0 |
1102 |
192.0 |
NaN |
1103 |
NaN |
186.0 |
1104 |
167.0 |
NaN |
1105 |
159.0 |
NaN |
然而pivot函数具有很强的局限性,除了功能上较少之外,还不允许values中出现重复的行列索引对(pair),例如下面的语句就会报错:
#df.pivot(index=‘School‘,columns=‘Gender‘,values=‘Height‘).head()
因此,更多的时候会选择使用强大的pivot_table函数
2. pivot_table
首先,再现上面的操作:
pd.pivot_table(df,index=‘ID‘,columns=‘Gender‘,values=‘Height‘).head()
Gender |
F |
M |
ID |
|
|
1101 |
NaN |
173.0 |
1102 |
192.0 |
NaN |
1103 |
NaN |
186.0 |
1104 |
167.0 |
NaN |
1105 |
159.0 |
NaN |
由于功能更多,速度上自然是比不上原来的pivot函数:
%timeit df.pivot(index=‘ID‘,columns=‘Gender‘,values=‘Height‘)
%timeit pd.pivot_table(df,index=‘ID‘,columns=‘Gender‘,values=‘Height‘)
2.28 ms ± 74.8 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)
9.77 ms ± 498 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Pandas中提供了各种选项,下面介绍常用参数:
① aggfunc:对组内进行聚合统计,可传入各类函数,默认为‘mean‘
pd.pivot_table(df,index=‘School‘,columns=‘Gender‘,values=‘Height‘,aggfunc=[‘mean‘,‘sum‘]).head()
|
mean |
sum |
Gender |
F |
M |
F |
M |
School |
|
|
|
|
S_1 |
173.125000 |
178.714286 |
1385 |
1251 |
S_2 |
173.727273 |
172.000000 |
1911 |
1548 |
② margins:汇总边际状态
pd.pivot_table(df,index=‘School‘,columns=‘Gender‘,values=‘Height‘,aggfunc=[‘mean‘,‘sum‘],margins=True).head()
#margins_name可以设置名字,默认为‘All‘
|
mean |
sum |
Gender |
F |
M |
All |
F |
M |
All |
School |
|
|
|
|
|
|
S_1 |
173.125000 |
178.714286 |
175.733333 |
1385 |
1251 |
2636 |
S_2 |
173.727273 |
172.000000 |
172.950000 |
1911 |
1548 |
3459 |
All |
173.473684 |
174.937500 |
174.142857 |
3296 |
2799 |
6095 |
③ 行、列、值都可以为多级
pd.pivot_table(df,index=[‘School‘,‘Class‘],
columns=[‘Gender‘,‘Address‘],
values=[‘Height‘,‘Weight‘])
|
|
Height |
... |
Weight |
|
Gender |
F |
M |
... |
F |
M |
|
Address |
street_1 |
street_2 |
street_4 |
street_5 |
street_6 |
street_7 |
street_1 |
street_2 |
street_4 |
street_5 |
... |
street_4 |
street_5 |
street_6 |
street_7 |
street_1 |
street_2 |
street_4 |
street_5 |
street_6 |
street_7 |
School |
Class |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
S_1 |
C_1 |
NaN |
179.5 |
159.0 |
NaN |
NaN |
NaN |
173.0 |
186.0 |
NaN |
NaN |
... |
64.0 |
NaN |
NaN |
NaN |
63.0 |
82.0 |
NaN |
NaN |
NaN |
NaN |
C_2 |
NaN |
NaN |
176.0 |
162.0 |
167.0 |
NaN |
NaN |
NaN |
NaN |
188.0 |
... |
94.0 |
63.0 |
63.0 |
NaN |
NaN |
NaN |
NaN |
68.0 |
53.0 |
NaN |
C_3 |
175.0 |
NaN |
NaN |
187.0 |
NaN |
NaN |
NaN |
195.0 |
161.0 |
NaN |
... |
NaN |
69.0 |
NaN |
NaN |
NaN |
70.0 |
68.0 |
NaN |
NaN |
82.0 |
S_2 |
C_1 |
NaN |
NaN |
NaN |
159.0 |
161.0 |
NaN |
NaN |
NaN |
163.5 |
NaN |
... |
NaN |
97.0 |
61.0 |
NaN |
NaN |
NaN |
71.0 |
NaN |
NaN |
84.0 |
C_2 |
NaN |
NaN |
NaN |
NaN |
NaN |
188.5 |
175.0 |
NaN |
155.0 |
193.0 |
... |
NaN |
NaN |
NaN |
76.5 |
74.0 |
NaN |
91.0 |
100.0 |
NaN |
NaN |
C_3 |
NaN |
NaN |
157.0 |
NaN |
164.0 |
190.0 |
NaN |
NaN |
187.0 |
171.0 |
... |
78.0 |
NaN |
81.0 |
99.0 |
NaN |
NaN |
73.0 |
88.0 |
NaN |
NaN |
C_4 |
NaN |
176.0 |
NaN |
NaN |
175.5 |
NaN |
NaN |
NaN |
NaN |
NaN |
... |
NaN |
NaN |
57.0 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
82.0 |
7 rows × 24 columns
3. crosstab(交叉表)
交叉表是一种特殊的透视表,典型的用途如分组统计,如现在想要统计关于街道和性别分组的频数:
pd.crosstab(index=df[‘Address‘],columns=df[‘Gender‘])
Gender |
F |
M |
Address |
|
|
street_1 |
1 |
2 |
street_2 |
4 |
2 |
street_4 |
3 |
5 |
street_5 |
3 |
3 |
street_6 |
5 |
1 |
street_7 |
3 |
3 |
交叉表的功能也很强大(但目前还不支持多级分组),下面说明一些重要参数:
① values和aggfunc:分组对某些数据进行聚合操作,这两个参数必须成对出现
pd.crosstab(index=df[‘Address‘],columns=df[‘Gender‘],
values=np.random.randint(1,20,df.shape[0]),aggfunc=‘min‘)
#默认参数等于如下方法:
#pd.crosstab(index=df[‘Address‘],columns=df[‘Gender‘],values=1,aggfunc=‘count‘)
Gender |
F |
M |
Address |
|
|
street_1 |
6 |
4 |
street_2 |
10 |
5 |
street_4 |
6 |
2 |
street_5 |
10 |
8 |
street_6 |
9 |
4 |
street_7 |
8 |
4 |
② 除了边际参数margins外,还引入了normalize参数,可选‘all‘,‘index‘,‘columns‘参数值
pd.crosstab(index=df[‘Address‘],columns=df[‘Gender‘],normalize=‘all‘,margins=True)
Gender |
F |
M |
All |
Address |
|
|
|
street_1 |
0.028571 |
0.057143 |
0.085714 |
street_2 |
0.114286 |
0.057143 |
0.171429 |
street_4 |
0.085714 |
0.142857 |
0.228571 |
street_5 |
0.085714 |
0.085714 |
0.171429 |
street_6 |
0.142857 |
0.028571 |
0.171429 |
street_7 |
0.085714 |
0.085714 |
0.171429 |
All |
0.542857 |
0.457143 |
1.000000 |
二、其他变形方法
1. melt
melt函数可以认为是pivot函数的逆操作,将unstacked状态的数据,压缩成stacked,使“宽”的DataFrame变“窄”
df_m = df[[‘ID‘,‘Gender‘,‘Math‘]]
df_m.head()
|
ID |
Gender |
Math |
0 |
1101 |
M |
34.0 |
1 |
1102 |
F |
32.5 |
2 |
1103 |
M |
87.2 |
3 |
1104 |
F |
80.4 |
4 |
1105 |
F |
84.8 |
df.pivot(index=‘ID‘,columns=‘Gender‘,values=‘Math‘).head()
Gender |
F |
M |
ID |
|
|
1101 |
NaN |
34.0 |
1102 |
32.5 |
NaN |
1103 |
NaN |
87.2 |
1104 |
80.4 |
NaN |
1105 |
84.8 |
NaN |
melt函数中的id_vars表示需要保留的列,value_vars表示需要stack的一组列
pivoted = df.pivot(index=‘ID‘,columns=‘Gender‘,values=‘Math‘)
result = pivoted.reset_index().melt(id_vars=[‘ID‘],value_vars=[‘F‘,‘M‘],value_name=‘Math‘) .dropna().set_index(‘ID‘).sort_index()
#检验是否与展开前的df相同,可以分别将这些链式方法的中间步骤展开,看看是什么结果
result.equals(df_m.set_index(‘ID‘))
True
2. 压缩与展开
(1)stack:这是最基础的变形函数,总共只有两个参数:level和dropna
df_s = pd.pivot_table(df,index=[‘Class‘,‘ID‘],columns=‘Gender‘,values=[‘Height‘,‘Weight‘])
df_s.groupby(‘Class‘).head(2)
|
|
Height |
Weight |
|
Gender |
F |
M |
F |
M |
Class |
ID |
|
|
|
|
C_1 |
1101 |
NaN |
173.0 |
NaN |
63.0 |
1102 |
192.0 |
NaN |
73.0 |
NaN |
C_2 |
1201 |
NaN |
188.0 |
NaN |
68.0 |
1202 |
176.0 |
NaN |
94.0 |
NaN |
C_3 |
1301 |
NaN |
161.0 |
NaN |
68.0 |
1302 |
175.0 |
NaN |
57.0 |
NaN |
C_4 |
2401 |
192.0 |
NaN |
62.0 |
NaN |
2402 |
NaN |
166.0 |
NaN |
82.0 |
df_stacked = df_s.stack()
df_stacked.groupby(‘Class‘).head(2)
|
|
|
Height |
Weight |
Class |
ID |
Gender |
|
|
C_1 |
1101 |
M |
173.0 |
63.0 |
1102 |
F |
192.0 |
73.0 |
C_2 |
1201 |
M |
188.0 |
68.0 |
1202 |
F |
176.0 |
94.0 |
C_3 |
1301 |
M |
161.0 |
68.0 |
1302 |
F |
175.0 |
57.0 |
C_4 |
2401 |
F |
192.0 |
62.0 |
2402 |
M |
166.0 |
82.0 |
stack函数可以看做将横向的索引放到纵向,因此功能类似与melt,参数level可指定变化的列索引是哪一层(或哪几层,需要列表)
df_stacked = df_s.stack(0)
df_stacked.groupby(‘Class‘).head(2)
|
|
Gender |
F |
M |
Class |
ID |
|
|
|
C_1 |
1101 |
Height |
NaN |
173.0 |
Weight |
NaN |
63.0 |
C_2 |
1201 |
Height |
NaN |
188.0 |
Weight |
NaN |
68.0 |
C_3 |
1301 |
Height |
NaN |
161.0 |
Weight |
NaN |
68.0 |
C_4 |
2401 |
Height |
192.0 |
NaN |
Weight |
62.0 |
NaN |
(2) unstack:stack的逆函数,功能上类似于pivot_table
df_stacked.head()
|
|
Gender |
F |
M |
Class |
ID |
|
|
|
C_1 |
1101 |
Height |
NaN |
173.0 |
Weight |
NaN |
63.0 |
1102 |
Height |
192.0 |
NaN |
Weight |
73.0 |
NaN |
1103 |
Height |
NaN |
186.0 |
result = df_stacked.unstack().swaplevel(1,0,axis=1).sort_index(axis=1)
result.equals(df_s)
#同样在unstack中可以指定level参数
True
三、哑变量与因子化
1. Dummy Variable(哑变量)
这里主要介绍get_dummies函数,其功能主要是进行one-hot编码:
df_d = df[[‘Class‘,‘Gender‘,‘Weight‘]]
df_d.head()
|
Class |
Gender |
Weight |
0 |
C_1 |
M |
63 |
1 |
C_1 |
F |
73 |
2 |
C_1 |
M |
82 |
3 |
C_1 |
F |
81 |
4 |
C_1 |
F |
64 |
现在希望将上面的表格前两列转化为哑变量,并加入第三列Weight数值:
pd.get_dummies(df_d[[‘Class‘,‘Gender‘]]).join(df_d[‘Weight‘]).head()
#可选prefix参数添加前缀,prefix_sep添加分隔符
|
Class_C_1 |
Class_C_2 |
Class_C_3 |
Class_C_4 |
Gender_F |
Gender_M |
Weight |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
63 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
73 |
2 |
1 |
0 |
0 |
0 |
0 |
1 |
82 |
3 |
1 |
0 |
0 |
0 |
1 |
0 |
81 |
4 |
1 |
0 |
0 |
0 |
1 |
0 |
64 |
2. factorize方法
该方法主要用于自然数编码,并且缺失值会被记做-1,其中sort参数表示是否排序后赋值
codes, uniques = pd.factorize([‘b‘, None, ‘a‘, ‘c‘, ‘b‘], sort=True)
display(codes)
display(uniques)
array([ 1, -1, 0, 2, 1])
array([‘a‘, ‘b‘, ‘c‘], dtype=object)
四、问题与练习
1. 问题
【问题一】 上面提到了许多变形函数,如melt/crosstab/pivot/pivot_table/stack/unstack函数,请总结它们各自的使用特点。
【问题二】 变形函数和多级索引是什么关系?哪些变形函数会使得索引维数变化?具体如何变化?
【问题三】 请举出一个除了上文提过的关于哑变量方法的例子。
【问题四】 使用完stack后立即使用unstack一定能保证变化结果与原始表完全一致吗?
【问题五】 透视表中涉及了三个函数,请分别使用它们完成相同的目标(任务自定)并比较哪个速度最快。
【问题六】 既然melt起到了stack的功能,为什么再设计stack函数?
2. 练习
【练习一】 继续使用上一章的药物数据集:
pd.read_csv(‘data/Drugs.csv‘).head()
|
YYYY |
State |
COUNTY |
SubstanceName |
DrugReports |
0 |
2010 |
VA |
ACCOMACK |
Propoxyphene |
1 |
1 |
2010 |
OH |
ADAMS |
Morphine |
9 |
2 |
2010 |
PA |
ADAMS |
Methadone |
2 |
3 |
2010 |
VA |
ALEXANDRIA CITY |
Heroin |
5 |
4 |
2010 |
PA |
ALLEGHENY |
Hydromorphone |
5 |
(a) 现在请你将数据表转化成如下形态,每行需要显示每种药物在每个地区的10年至17年的变化情况,且前三列需要排序:
(b) 现在请将(a)中的结果恢复到原数据表,并通过equal函数检验初始表与新的结果是否一致(返回True)
【练习二】 现有一份关于某地区地震情况的数据集,请解决如下问题:
pd.read_csv(‘data/Earthquake.csv‘).head()
|
日期 |
时间 |
维度 |
经度 |
方向 |
距离 |
深度 |
烈度 |
0 |
2003.05.20 |
12:17:44 AM |
39.04 |
40.38 |
west |
0.1 |
10.0 |
0.0 |
1 |
2007.08.01 |
12:03:08 AM |
40.79 |
30.09 |
west |
0.1 |
5.2 |
4.0 |
2 |
1978.05.07 |
12:41:37 AM |
38.58 |
27.61 |
south_west |
0.1 |
0.0 |
0.0 |
3 |
1997.03.22 |
12:31:45 AM |
39.47 |
36.44 |
south_west |
0.1 |
10.0 |
0.0 |
4 |
2000.04.02 |
12:57:38 AM |
40.80 |
30.24 |
south_west |
0.1 |
7.0 |
0.0 |
(a) 现在请你将数据表转化成如下形态,将方向列展开,并将距离、深度和烈度三个属性压缩:
(b) 现在请将(a)中的结果恢复到原数据表,并通过equal函数检验初始表与新的结果是否一致(返回True)
Pandas变形
标签:列表 数值 lsp drop pair 其他 转化 normal 指定
原文地址:https://www.cnblogs.com/hichens/p/13282894.html