标签:== ssi solution nat inpu ber 分治法 operator targe
Given a string of numbers and operators, return all possible results from computing all the different possible ways to group numbers and operators. The valid operators are +
, -
and *
.
Example 1:
Input:"2-1-1"
Output:[0, 2]
Explanation: ((2-1)-1) = 0 (2-(1-1)) = 2Example 2:
Input:"2*3-4*5"
Output:[-34, -14, -10, -10, 10]
Explanation: (2*(3-(4*5))) = -34 ((2*3)-(4*5)) = -14 ((2*(3-4))*5) = -10 (2*((3-4)*5)) = -10 (((2*3)-4)*5) = 10
为运算表达式设计优先级。题意是给一个以字符串表示的运算表达式,请为其添加括号,展示出所有可能的解。运算符号只有+,-,*。
思路是分治法。在实际操作的过程中,不需要真的添加括号,而是会通过分治的办法以达到括号能实现的运算优先级的目的。具体的思路是,遍历input字符串,每当遇到一个运算符号,就把这个符号的左边和右边分开,接着往下分治计算。在分治后的两个list中,挑出两个数字两两计算。最后把计算结果加入最后的list。
时间 - ?
空间O(n)
Java实现
1 class Solution { 2 public List<Integer> diffWaysToCompute(String input) { 3 List<Integer> res = new ArrayList<>(); 4 for (int i = 0; i < input.length(); i++) { 5 char c = input.charAt(i); 6 if (c == ‘-‘ || c == ‘*‘ || c == ‘/‘) { 7 String a = input.substring(0, i); 8 String b = input.substring(i + 1); 9 List<Integer> aList = diffWaysToCompute(a); 10 List<Integer> bList = diffWaysToCompute(b); 11 for (int x : aList) { 12 for (int y : bList) { 13 if (c == ‘-‘) { 14 res.add(x - y); 15 } else if (c == ‘+‘) { 16 res.add(x + y); 17 } else if (c == ‘*‘) { 18 res.add(x * y); 19 } 20 } 21 } 22 } 23 } 24 if (res.size() == 0) { 25 res.add(Integer.valueOf(input)); 26 } 27 return res; 28 } 29 }
[LeetCode] 241. Different Ways to Add Parentheses
标签:== ssi solution nat inpu ber 分治法 operator targe
原文地址:https://www.cnblogs.com/cnoodle/p/13282852.html