码迷,mamicode.com
首页 > 其他好文 > 详细

【举个栗子】老是记不住的概率论定义

时间:2020-07-11 20:56:19      阅读:87      评论:0      收藏:0      [点我收藏+]

标签:inf   常用   prim   估计   世界   特殊   随机   isp   事件   

随机变量是一个对现实世界的数学建模,将文字表述的事件描述为数学代号。将特点事件的概率描述为变量的特定取值概率或取值范围概率。

累计分布函数(cdf)是一个特殊的概率,表示为\(F_X(x)=P(X \le x)\),是单调非递减函数。

概率密度函数(pdf)是另一个特殊的概率,对于连续的cdf,pdf是cdf的导数,表示为\(f_X(x)=F\prime_X(x)\) ;对于离散的cdf,pdf是cdf的差分表示。

如果发生概率是概率的准确估计值,那么期望就等于平均值。

对于离散随机变量:

\[E[X]=\sum_i x_iP(X=x_i) \]

对于连续随机变量:

\[E[X]=\int_{-\infty}^{\infty}xf_X(x)dx \]

相对频率与概率一般并不相同,为了区别,称期望为统计平均,日常用的平均值为样本平均。

随机变量的映射输出不是固定数字而是时间函数\(x(t)\)时,函数\(x(t)\)称为随机过程的实现。\(X(\omega)=x(t),\omega \in S,x \in F,-\infty<t<\infty\)\(S\)是样本空间,\(F\)是实数轴上一个函数集合。

【举个栗子】老是记不住的概率论定义

标签:inf   常用   prim   估计   世界   特殊   随机   isp   事件   

原文地址:https://www.cnblogs.com/ColleenHe/p/13285397.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!