标签:style blog http io color ar os sp for
题意:给n对炸弹可以放置的位置(每个位置为一个二维平面上的点),每次放置炸弹是时只能选择这一对中的其中一个点,每个炸弹爆炸的范围半径都一样,控制爆炸的半径使得所有的爆炸范围都不相交(可以相切),求解这个最大半径。
思路:二分答案,其中建图,用2-SAT判断方案是否可行。
代码:
#include <iostream> #include <cstdio> #include <cstring> #include <vector> #include <cmath> #include <algorithm> using namespace std; const int MAXN = 105; const double eps = 1e-5; struct TwoSAT{ int n; vector<int> g[MAXN * 2]; bool mark[MAXN * 2]; int s[MAXN * 2], c; bool dfs(int x) { if (mark[x^1]) return false; if (mark[x]) return true; mark[x] = true; s[c++] = x; for (int i = 0; i < g[x].size(); i++) if (!dfs(g[x][i])) return false; return true; } void init(int n) { this->n = n; for (int i = 0; i < n * 2; i++) g[i].clear(); memset(mark, 0, sizeof(mark)); } void add_clause(int x, int xval, int y, int yval) { x = x * 2 + xval; y = y * 2 + yval; g[x^1].push_back(y); g[y^1].push_back(x); } bool solve() { for (int i = 0; i < n * 2; i += 2) if (!mark[i] && !mark[i + 1]) { c = 0; if (!dfs(i)) { while (c > 0) mark[s[--c]] = false; if (!dfs(i + 1)) return false; } } return true; } }; TwoSAT solver; struct Point{ double x, y; }p[MAXN][2]; int n; inline double dis(Point a, Point b) { double dx = a.x - b.x; double dy = a.y - b.y; return sqrt(dx * dx + dy * dy); } inline bool xj(Point a, Point b, double r) { if (dis(a, b) > 2 * r) return false; return true; } bool judge(double r) { solver.init(n); for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { for (int x = 0; x < 2; x++) { for (int y = 0; y < 2; y++) { if (xj(p[i][x], p[j][y], r)) solver.add_clause(i, x, j, y); } } } } return solver.solve(); } int main() { while (scanf("%d", &n) != EOF) { for (int i = 0; i < n; i++) for (int j = 0; j < 2; j++) { scanf("%lf%lf", &p[i][j].x, &p[i][j].y); } double l = 0, r = 1e5; while (r - l >= eps) { double mid = (l + r) / 2; if (judge(mid)) l = mid; else r = mid; } printf("%.2lf\n", l); } return 0; }
标签:style blog http io color ar os sp for
原文地址:http://blog.csdn.net/u011345461/article/details/40986841