码迷,mamicode.com
首页 > 其他好文 > 详细

数列 题解

时间:2020-07-15 15:54:31      阅读:52      评论:0      收藏:0      [点我收藏+]

标签:pre   数据   快速幂   矩阵快速幂   输出   包含   格式   init   ++i   

题目描述

下面数列的第 n 项:

\(f(0) = a_0 ,f(1) = a_1 ,f(2) = a_2\)

\(f(n) = b×f(n ? 1) + c×f(n ? 2) + d×f(n ? 3) + e (n ≥ 3)\)

输入格式

包含 1 行,共 8 个整数:\(a_0、a_1、a_2、b、c、d、e、n\)

输出格式

输出 f(n) 的后 18 位(后 18 位的前缀 0 需要输出,不足 18 位用 0 补齐)。

样例输入

1 2 3 4 5 6 7 3

样例输出

000000000000000035	

数据范围

对于 30% 的数据,\(0 ≤ a_0 ,a_1 ,a_2 ,b,c,d,e,n ≤ 10^6\)

对于 100% 的数据,\(0 ≤ a_0 ,a_1 ,a_2 ,b,c,d,e,n ≤ 10^{18}\)

没有太多可分析的,直接来个示例代码吧

// 取最后18位的乘法计算
ll last18(ll x, ll y) {
	int a[25] = {0}, b[25] = {0}, c[25] = {0};
	// 先处理两个高精度的数
	while (x || a[0] == 0) {
		a[++a[0]] = x % 10; x /= 10;
	}
	while (y || b[0] == 0) {
		b[++b[0]] = y % 10; y /= 10;
	}
	// 乘法只取后18位
	for (int i = 1; i <= a[0]; ++i) {
		for (int j = 1; j <= b[0]; ++j) {
			if (i + j - 1 <= 18) {
				c[i + j - 1] += a[i] * b[j];
				c[i + j] += c[i + j - 1] / 10;
				c[i + j - 1] %= 10;
			}
		}
	}

	// 最后再拼起来
	ll ret = 0;
	for (int i = 18; i; --i) {
		ret = ret * 10 + c[i];
	}
	return ret;
}

struct JZ {
	ll a[5][5];
	void one() {
		memset(a, 0, sizeof(a));
		for (int i = 1; i <= 4; ++i) a[i][i] = 1;
	}
	void init() {
		memset(a, 0, sizeof(a));
		a[1][1] = b;
		a[1][2] = c;
		a[1][3] = d;
		a[1][4] = e;
		a[2][1] = a[3][2] = a[4][4] = 1;
	}
	void cheng(JZ &A) { // 矩阵乘法
		JZ C;
		memset(C.a, 0, sizeof(C.a));
		for (int i = 1; i <= 4; ++i) {
			for (int j = 1; j <= 4; ++j) {
				for (int k = 1; k <= 4; ++k) {
					C.a[i][j] = C.a[i][j] + last18(a[i][k], A.a[k][j]);
					if (C.a[i][j] >= mod) C.a[i][j] -= mod;
				}
			}
		}
		memcpy(a, C.a, sizeof(a));
	}
};

// 矩阵快速幂,求斐波那契数列用
JZ jzqpow(ll x) {
	JZ ret;
	ret.one();
	JZ base;
	base.init();
	while (x) {
		if (x & 1) {
			ret.cheng(base);
		}
		base.cheng(base);
		x >>= 1;
	}
	return ret;
}
// 最后的输出
void print(ll x) {
	int a[20];
	for (int i = 0; i < 18; ++i) {
		a[i] = x % 10;
		x /= 10;
	}
	for (int i = 17; i >= 0; --i) {
		printf("%d", a[i]);
	}
}

数列 题解

标签:pre   数据   快速幂   矩阵快速幂   输出   包含   格式   init   ++i   

原文地址:https://www.cnblogs.com/kuangbiaopilihu/p/13305015.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!