码迷,mamicode.com
首页 > 其他好文 > 详细

Codeforces 1372D Omkar and Circle

时间:2020-07-15 23:23:37      阅读:63      评论:0      收藏:0      [点我收藏+]

标签:tps   奇数   描述   转化   变量   strong   操作   force   codeforce   

题目链接

重新表述

环上有 $n$ 个非负整数,$n$ 是大于 1 的奇数。

每相邻两数之间插一块挡板,最初有 $n$ 块挡板。

相邻两挡板之间称为一

每个数可以被染成白色或黑色,最初每个数都是白色的。

将题目描述的操作重新表述为:任意选择连续的三段,将中间那一段里的数全染成黑色并将其两端的两块挡板抽走,使三段合为一段。

不断如此操作直到只剩一块挡板。此时 $n$ 个数成为一段,所有白色的数之和即是题目中所说的环上的最后一个数。

不变量

不难证明,每次操作过后,每一段内

  1. 总有奇数个数。
  2. 两端的数总是白色的。
  3. 相邻两白色的数之间总是隔着奇数个黑色的数。

最终局面一定满足条件2和条件3。可以证明,只有一块挡板且满足条件2和条件3的局面都是可以达成的最终局面。

转化

至此,原问题转化成:

任选环上紧挨着的两个数,在这两数之间把环剪开,得到一个数组。求数组的奇数位置上的数之和的最大值。

官方题解给出了一个简短的做法:

用输入的数组 $a_1, \dots, a_n$ 构造一个新数组

$a_2, a_4, \dots, a_{n-1}, a_1, a_3, \dots, a_n, a_2, a_4, \dots, a_{n-1}$

答案即此数组的长为 $\frac{n + 1}{2}$ 的子段的和的最大值。

Codeforces 1372D Omkar and Circle

标签:tps   奇数   描述   转化   变量   strong   操作   force   codeforce   

原文地址:https://www.cnblogs.com/Patt/p/13307129.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!