码迷,mamicode.com
首页 > 其他好文 > 详细

UVA 1025 A Spy in the Metro DP

时间:2014-11-11 02:00:44      阅读:148      评论:0      收藏:0      [点我收藏+]

标签:des   style   blog   http   io   color   ar   os   sp   

DP[ i ][ j ] 在 i 时刻 j 号车站的等待最小时间.....

有3种可能: 在原地等,坐开往左边的车,做开往右边的车


 

Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu

 Status

Description

bubuko.com,布布扣

Secret agent Maria was sent to Algorithms City to carry out an especially dangerous mission. After several thrilling events we find her in the first station of Algorithms City Metro, examining the time table. The Algorithms City Metro consists of a single line with trains running both ways, so its time table is not complicated.

Maria has an appointment with a local spy at the last station of Algorithms City Metro. Maria knows that a powerful organization is after her. She also knows that while waiting at a station, she is at great risk of being caught. To hide in a running train is much safer, so she decides to stay in running trains as much as possible, even if this means traveling backward and forward. Maria needs to know a schedule with minimal waiting time at the stations that gets her to the last station in time for her appointment. You must write a program that finds the total waiting time in a best schedule for Maria.

The Algorithms City Metro system has N stations, consecutively numbered from 1 to N. Trains move in both directions: from the first station to the last station and from the last station back to the first station. The time required for a train to travel between two consecutive stations is fixed since all trains move at the same speed. Trains make a very short stop at each station, which you can ignore for simplicity. Since she is a very fast agent, Maria can always change trains at a station even if the trains involved stop in that station at the same time.

bubuko.com,布布扣

Input 

The input file contains several test cases. Each test case consists of seven lines with information as follows.
Line 1.
The integer N ( 2bubuko.com,布布扣Nbubuko.com,布布扣50), which is the number of stations.
Line 2.
The integer T ( 0bubuko.com,布布扣Tbubuko.com,布布扣200), which is the time of the appointment.
Line 3.
N - 1 integers: t1t2,..., tN - 1 ( 1bubuko.com,布布扣tibubuko.com,布布扣70), representing the travel times for the trains between two consecutive stations: t1 represents the travel time between the first two stations, t2 the time between the second and the third station, and so on.
Line 4.
The integer M1 ( 1bubuko.com,布布扣M1bubuko.com,布布扣50), representing the number of trains departing from the first station.
Line 5.
M1 integers: d1d2,..., dM1 ( 0bubuko.com,布布扣dibubuko.com,布布扣250 and di < di + 1), representing the times at which trains depart from the first station.
Line 6.
The integer M2 ( 1bubuko.com,布布扣M2bubuko.com,布布扣50), representing the number of trains departing from the N-th station.
Line 7.
M2 integers: e1e2,..., eM2 ( 0bubuko.com,布布扣eibubuko.com,布布扣250 and ei < ei + 1) representing the times at which trains depart from the N-th station.

The last case is followed by a line containing a single zero.

Output 

For each test case, print a line containing the case number (starting with 1) and an integer representing the total waiting time in the stations for a best schedule, or the word `impossible‘ in case Maria is unable to make the appointment. Use the format of the sample output.

Sample Input 

4
55
5 10 15
4
0 5 10 20
4
0 5 10 15
4
18
1 2 3
5
0 3 6 10 12
6
0 3 5 7 12 15
2
30
20
1
20
7
1 3 5 7 11 13 17
0

Sample Output 

Case Number 1: 5
Case Number 2: 0
Case Number 3: impossible

Source

2003 - Beverly Hills

Root :: AOAPC II: Beginning Algorithm Contests (Second Edition) (Rujia Liu) :: Chapter 9. Dynamic Programming :: Examples

 Status

bubuko.com,布布扣

 

 

 


    1. #include <iostream>  
    2. #include <cstdio>  
    3. #include <cstring>  
    4. #include <algorithm>  
    5.   
    6. using namespace std;  
    7.   
    8. const int INF=0x3f3f3f3f;  
    9. const int maxn=440;  
    10.   
    11. int n,T;  
    12. int t[maxn];  
    13. int m1,d1[maxn];  
    14. int m2,d2[maxn];  
    15. int dp[maxn][maxn];  
    16. bool hasR[maxn][maxn],hasL[maxn][maxn];  
    17.   
    18. void init()  
    19. {  
    20.     memset(hasR,0,sizeof(hasR));  
    21.     memset(hasL,0,sizeof(hasL));  
    22.     memset(dp,63,sizeof(dp));  
    23.     memset(t,0,sizeof(t));  
    24.     memset(d1,0,sizeof(d1));  
    25.     memset(d2,0,sizeof(d2));  
    26. }  
    27.   
    28. void getH()  
    29. {  
    30.     for(int i=0;i<m1;i++)  
    31.     {  
    32.         int time=d1[i];  
    33.         for(int j=1;j<=n;j++)  
    34.         {  
    35.             time+=t[j];  
    36.             hasR[time][j]=true;  
    37.         }  
    38.     }  
    39.   
    40.     for(int i=0;i<m2;i++)  
    41.     {  
    42.         int time=d2[i];  
    43.         for(int j=n;j>=1;j--)  
    44.         {  
    45.             time+=t[j+1];  
    46.             hasL[time][j]=true;  
    47.         }  
    48.     }  
    49. }  
    50.   
    51. int main()  
    52. {  
    53.     int cas=1;  
    54.     while(scanf("%d",&n)!=EOF&&n)  
    55.     {  
    56.         init();  
    57.   
    58.         scanf("%d",&T);  
    59.         for(int i=2;i<=n;i++)  
    60.             scanf("%d",t+i);  
    61.         scanf("%d",&m1);  
    62.         for(int i=0;i<m1;i++)  
    63.             scanf("%d",d1+i);  
    64.         scanf("%d",&m2);  
    65.         for(int i=0;i<m2;i++)  
    66.             scanf("%d",d2+i);  
    67.   
    68.         getH();  
    69.   
    70.         dp[T][n]=0;  
    71.   
    72.         for(int i=T-1;i>=0;i--)  
    73.         {  
    74.             for(int j=1;j<=n;j++)  
    75.             {  
    76.                 dp[i][j]=dp[i+1][j]+1;  
    77.   
    78.                 if(j<n&&i+t[j+1]<=T&&hasR[i][j])  
    79.                     dp[i][j]=min(dp[i][j],dp[i+t[j+1]][j+1]);  
    80.   
    81.                 if(j>1&&i+t[j]<=T&&hasL[i][j])  
    82.                     dp[i][j]=min(dp[i][j],dp[i+t[j]][j-1]);  
    83.             }  
    84.         }  
    85.   
    86.         printf("Case Number %d: ",cas++);  
    87.         if(dp[0][1]>=INF) puts("impossible");  
    88.         else printf("%d\n",dp[0][1]);  
    89.     }  
    90.     return 0;  

UVA 1025 A Spy in the Metro DP

标签:des   style   blog   http   io   color   ar   os   sp   

原文地址:http://www.cnblogs.com/yuyanbian/p/4088600.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!