码迷,mamicode.com
首页 > 其他好文 > 详细

韩信点兵

时间:2020-07-19 11:42:03      阅读:79      评论:0      收藏:0      [点我收藏+]

标签:韩信点兵   out   iostream   while   同余   pac   报告   time   描述   

描述

相传韩信才智过人,从不直接清点自己军队的人数,只要让士兵先后以三人一排、五人一排、七人一排地变换队形,而他每次只掠一眼队伍的排尾就知道总人数了。输入3个非负整数a,b,c ,表示每种队形排尾的人数(a<3,b<5,c<7),输出总人数的最小值(或报告无解)。已知总人数不小于10,不超过100 。

输入

输入3个非负整数a,b,c ,表示每种队形排尾的人数(a<3,b<5,c<7)。例如,输入:2 4 5

输出

输出总人数的最小值(或报告无解,即输出Noanswer)。实例,输出:89

样例输入

2 1 6

2 1 3

样例输出

41

No answer

 

定理1 如 a 对 n 取余等于 b 对 n 取余,c  对 n 取余等于 d 对 n 取余,则 ac  对 n 取余等于 bd 对 n 取余。

用同余式叙述就是:

如  a % n == b % n      c % n == d % n  

则  ac % n == bd % n

 

定理2 被除数 a 加上或减去除数b的倍数,再对 b 取余,余数 r 不变。即

如a ≡ r(mod b ),则a ± b n≡r(mod b )

例如70≡1(mod 3 )可得70±10×3≡1(mod 3 ) 

 

【韩信点兵法口诀的原理】

①能被5,7除尽数是35k,其中k=2,即70除3正好余1,70a 除3正好余 a。

②能被3,7除尽数是21k,其中k=1,即21除5正好余1,21b 除5正好余 b。

③能被3,5除尽数是15k,其中k=1,即15除7正好余1,15c 除7正好余 c。

 

这样——

根据①可知 70a+21b+15c 除3正好余a。

根据②可知 70a+21b+15c 除5正好余b。

根据③可知 70a+21b+15c 除7正好余c。 

(70a+21b+15c)%(3*5*7)为最小值,然后再判断最小值是否满足条件。

 

代码如下

#include<iostream>
using namespace std;

int main()
{
    int num1,num2,num3;
    int sum;
    while (cin>>num1>>num2>>num3)
    {
        sum = (70*num1 + 21*num2 + 15*num3) % (3*5*7);
        if (sum > 100)
            cout<<"No answer"<<endl;
        else
            cout<<sum<<endl;
    }
    return 0;
}

韩信点兵

标签:韩信点兵   out   iostream   while   同余   pac   报告   time   描述   

原文地址:https://www.cnblogs.com/go-alltheway/p/13338736.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!