码迷,mamicode.com
首页 > 其他好文 > 详细

计算几何模板

时间:2020-07-19 23:32:16      阅读:67      评论:0      收藏:0      [点我收藏+]

标签:bsp   scan   圆的切线   90度   测试   规范   int()   enc   tmp   

用了kuangbin大佬的板子

一.二维计算几何模板

1.点

struct Point
{
    double x, y;
    Point() {}
    Point(double _x, double _y)
    {
        x = _x;
        y = _y;
    }
    void input()
    {
        scanf("%lf%lf", &x, &y);
    }
    void output()
    {
        printf("%.2f %.2f\n", x, y);
    }
    bool operator==(Point b) const
    {
        return sgn(x - b.x) == 0 && sgn(y - b.y) == 0;
    }
    bool operator<(Point b) const
    {
        return sgn(x - b.x) == 0 ? sgn(y - b.y) < 0 : x < b.x;
    }
    Point operator-(const Point &b) const
    {
        return Point(x - b.x, y - b.y);
    }
    //叉积
    double operator^(const Point &b) const
    {
        return x * b.y - y * b.x;
    }
    //点积
    double operator*(const Point &b) const
    {
        return x * b.x + y * b.y;
    }
    //返回长度
    double len()
    {
        return hypot(x, y); //库函数
    }
    //返回长度的平方
    double len2()
    {
        return x * x + y * y;
    }
    //返回两点的距离
    double distance(Point p)
    {
        return hypot(x - p.x, y - p.y);
    }
    Point operator+(const Point &b) const
    {
        return Point(x + b.x, y + b.y);
    }
    Point operator*(const double &k) const
    {
        return Point(x * k, y * k);
    }
    Point operator/(const double &k) const
    {
        return Point(x / k, y / k);
    }
    //`计算pa  和  pb 的夹角`
    //`就是求这个点看a,b 所成的夹角`
    //`测试 LightOJ1203`
    double rad(Point a, Point b)
    {
        Point p = *this;
        return fabs(atan2(fabs((a - p) ^ (b - p)), (a - p) * (b - p)));
    }
    //`化为长度为r的向量`
    Point trunc(double r)
    {
        double l = len();
        if (!sgn(l))
            return *this;
        r /= l;
        return Point(x * r, y * r);
    }
    //`逆时针旋转90度`
    Point rotleft()
    {
        return Point(-y, x);
    }
    //`顺时针旋转90度`
    Point rotright()
    {
        return Point(y, -x);
    }
    //`绕着p点逆时针旋转angle`
    Point rotate(Point p, double angle)
    {
        Point v = (*this) - p;
        double c = cos(angle), s = sin(angle);
        return Point(p.x + v.x * c - v.y * s, p.y + v.x * s + v.y * c);
    }
};

2.线

struct Line
{
    Point s, e;
    Line() {}
    Line(Point _s, Point _e)
    {
        s = _s;
        e = _e;
    }
    bool operator==(const Line v) const
    {
        return (s == v.s) && (e == v.e);
    }
    bool operator<(const Line v) const
    {
        if (s == v.s)
            return e < v.e;
        return s < v.s;
    }
    //`根据一个点和倾斜角angle确定直线,0<=angle<pi`
    Line(Point p, double angle)
    {
        s = p;
        if (sgn(angle - pi / 2) == 0)
        {
            e = (s + Point(0, 1));
        }
        else
        {
            e = (s + Point(1, tan(angle)));
        }
    }
    //ax+by+c=0
    Line(double a, double b, double c)
    {
        if (sgn(a) == 0)
        {
            s = Point(0, -c / b);
            e = Point(1, -c / b);
        }
        else if (sgn(b) == 0)
        {
            s = Point(-c / a, 0);
            e = Point(-c / a, 1);
        }
        else
        {
            s = Point(0, -c / b);
            e = Point(1, (-c - a) / b);
        }
    }
    void input()
    {
        s.input();
        e.input();
    }
    void adjust()
    {
        if (e < s)
            swap(s, e);
    }
    //求线段长度
    double length()
    {
        return s.distance(e);
    }
    //`返回直线倾斜角 0<=angle<pi`
    double angle()
    {
        double k = atan2(e.y - s.y, e.x - s.x);
        if (sgn(k) < 0)
            k += pi;
        if (sgn(k - pi) == 0)
            k -= pi;
        return k;
    }
    //`点和直线关系`
    //`1  在左侧`
    //`2  在右侧`
    //`3  在直线上`
    int relation(Point p)
    {
        int c = sgn((p - s) ^ (e - s));
        if (c < 0)
            return 1;
        else if (c > 0)
            return 2;
        else
            return 3;
    }
    // 点在线段上的判断
    bool pointonseg(Point p)
    {
        return sgn((p - s) ^ (e - s)) == 0 && sgn((p - s) * (p - e)) <= 0;
    }
    //`两向量平行(对应直线平行或重合)`
    bool parallel(Line v)
    {
        return sgn((e - s) ^ (v.e - v.s)) == 0;
    }
    //`两线段相交判断`
    //`2 规范相交`
    //`1 非规范相交`
    //`0 不相交`
    int segcrossseg(Line v)
    {
        int d1 = sgn((e - s) ^ (v.s - s));
        int d2 = sgn((e - s) ^ (v.e - s));
        int d3 = sgn((v.e - v.s) ^ (s - v.s));
        int d4 = sgn((v.e - v.s) ^ (e - v.s));
        if ((d1 ^ d2) == -2 && (d3 ^ d4) == -2)
            return 2;
        return (d1 == 0 && sgn((v.s - s) * (v.s - e)) <= 0) ||
               (d2 == 0 && sgn((v.e - s) * (v.e - e)) <= 0) ||
               (d3 == 0 && sgn((s - v.s) * (s - v.e)) <= 0) ||
               (d4 == 0 && sgn((e - v.s) * (e - v.e)) <= 0);
    }
    //`直线和线段相交判断`
    //`-*this line   -v seg`
    //`2 规范相交`
    //`1 非规范相交`
    //`0 不相交`
    int linecrossseg(Line v)
    {
        int d1 = sgn((e - s) ^ (v.s - s));
        int d2 = sgn((e - s) ^ (v.e - s));
        if ((d1 ^ d2) == -2)
            return 2;
        return (d1 == 0 || d2 == 0);
    }
    //`两直线关系`
    //`0 平行`
    //`1 重合`
    //`2 相交`
    int linecrossline(Line v)
    {
        if ((*this).parallel(v))
            return v.relation(s) == 3;
        return 2;
    }
    //`求两直线的交点`
    //`要保证两直线不平行或重合`
    Point crosspoint(Line v)
    {
        double a1 = (v.e - v.s) ^ (s - v.s);
        double a2 = (v.e - v.s) ^ (e - v.s);
        return Point((s.x * a2 - e.x * a1) / (a2 - a1), (s.y * a2 - e.y * a1) / (a2 - a1));
    }
    //点到直线的距离
    double dispointtoline(Point p)
    {
        return fabs((p - s) ^ (e - s)) / length();
    }
    //点到线段的距离
    double dispointtoseg(Point p)
    {
        if (sgn((p - s) * (e - s)) < 0 || sgn((p - e) * (s - e)) < 0)
            return min(p.distance(s), p.distance(e));
        return dispointtoline(p);
    }
    //`返回线段到线段的距离`
    //`前提是两线段不相交,相交距离就是0了`
    double dissegtoseg(Line v)
    {
        return min(min(dispointtoseg(v.s), dispointtoseg(v.e)), min(v.dispointtoseg(s), v.dispointtoseg(e)));
    }
    //`返回点p在直线上的投影`
    Point lineprog(Point p)
    {
        return s + (((e - s) * ((e - s) * (p - s))) / ((e - s).len2()));
    }
    //`返回点p关于直线的对称点`
    Point symmetrypoint(Point p)
    {
        Point q = lineprog(p);
        return Point(2 * q.x - p.x, 2 * q.y - p.y);
    }
    //求线段的中垂线
    Line getMidLine()
    {
        Point mid = (s + e);
        mid.x /= 2.0;
        mid.y /= 2.0;
        Point tp = e - s;
        return Line(mid, mid + Point(-tp.y, tp.x));
    }
};

 3.圆

struct circle{
    Point p;//圆心
    double r;//半径
    circle(){}
    circle(Point _p,double _r){
        p = _p;
        r = _r;
    }
    circle(double x,double y,double _r){
        p = Point(x,y);
        r = _r;
    }
    //`三角形的外接圆`
    //`需要Point的+ /  rotate()  以及Line的crosspoint()`
    //`利用两条边的中垂线得到圆心`
    //`测试:UVA12304`
    circle(Point a,Point b,Point c){
        Line u = Line((a+b)/2,((a+b)/2)+((b-a).rotleft()));
        Line v = Line((b+c)/2,((b+c)/2)+((c-b).rotleft()));
        p = u.crosspoint(v);
        r = p.distance(a);
    }
    //`三角形的内切圆`
    //`参数bool t没有作用,只是为了和上面外接圆函数区别`
    //`测试:UVA12304`
    circle(Point a,Point b,Point c,bool t){
        Line u,v;
        double m = atan2(b.y-a.y,b.x-a.x), n = atan2(c.y-a.y,c.x-a.x);
        u.s = a;
        u.e = u.s + Point(cos((n+m)/2),sin((n+m)/2));
        v.s = b;
        m = atan2(a.y-b.y,a.x-b.x) , n = atan2(c.y-b.y,c.x-b.x);
        v.e = v.s + Point(cos((n+m)/2),sin((n+m)/2));
        p = u.crosspoint(v);
        r = Line(a,b).dispointtoseg(p);
    }
    //输入
    void input(){
        p.input();
        scanf("%lf",&r);
    }
    //输出
    void output(){
        printf("%.2lf %.2lf %.2lf\n",p.x,p.y,r);
    }
    bool operator == (circle v){
        return (p==v.p) && sgn(r-v.r)==0;
    }
    bool operator < (circle v)const{
        return ((p<v.p)||((p==v.p)&&sgn(r-v.r)<0));
    }
    //面积
    double area(){
        return pi*r*r;
    }
    //周长
    double circumference(){
        return 2*pi*r;
    }
    //`点和圆的关系`
    //`0 圆外`
    //`1 圆上`
    //`2 圆内`
    int relation(Point b){
        double dst = b.distance(p);
        if(sgn(dst-r) < 0)return 2;
        else if(sgn(dst-r)==0)return 1;
        return 0;
    }
    //`线段和圆的关系`
    //`比较的是圆心到线段的距离和半径的关系`
    int relationseg(Line v){
        double dst = v.dispointtoseg(p);
        if(sgn(dst-r) < 0)return 2;
        else if(sgn(dst-r) == 0)return 1;
        return 0;
    }
    //`直线和圆的关系`
    //`比较的是圆心到直线的距离和半径的关系`
    int relationline(Line v){
        double dst = v.dispointtoline(p);
        if(sgn(dst-r) < 0)return 2;
        else if(sgn(dst-r) == 0)return 1;
        return 0;
    }
    //`两圆的关系`
    //`5 相离`
    //`4 外切`
    //`3 相交`
    //`2 内切`
    //`1 内含`
    //`需要Point的distance`
    //`测试:UVA12304`
    int relationcircle(circle v){
        double d = p.distance(v.p);
        if(sgn(d-r-v.r) > 0)return 5;
        if(sgn(d-r-v.r) == 0)return 4;
        double l = fabs(r-v.r);
        if(sgn(d-r-v.r)<0 && sgn(d-l)>0)return 3;
        if(sgn(d-l)==0)return 2;
        if(sgn(d-l)<0)return 1;
    }
    //`求两个圆的交点,返回0表示没有交点,返回1是一个交点,2是两个交点`
    //`需要relationcircle`
    //`测试:UVA12304`
    int pointcrosscircle(circle v,Point &p1,Point &p2){
        int rel = relationcircle(v);
        if(rel == 1 || rel == 5)return 0;
        double d = p.distance(v.p);
        double l = (d*d+r*r-v.r*v.r)/(2*d);
        double h = sqrt(r*r-l*l);
        Point tmp = p + (v.p-p).trunc(l);
        p1 = tmp + ((v.p-p).rotleft().trunc(h));
        p2 = tmp + ((v.p-p).rotright().trunc(h));
        if(rel == 2 || rel == 4)
            return 1;
        return 2;
    }
    //`求直线和圆的交点,返回交点个数`
    int pointcrossline(Line v,Point &p1,Point &p2){
        if(!(*this).relationline(v))return 0;
        Point a = v.lineprog(p);
        double d = v.dispointtoline(p);
        d = sqrt(r*r-d*d);
        if(sgn(d) == 0){
            p1 = a;
            p2 = a;
            return 1;
        }
        p1 = a + (v.e-v.s).trunc(d);
        p2 = a - (v.e-v.s).trunc(d);
        return 2;
    }
    //`得到过a,b两点,半径为r1的两个圆`
    int gercircle(Point a,Point b,double r1,circle &c1,circle &c2){
        circle x(a,r1),y(b,r1);
        int t = x.pointcrosscircle(y,c1.p,c2.p);
        if(!t)return 0;
        c1.r = c2.r = r;
        return t;
    }
    //`得到与直线u相切,过点q,半径为r1的圆`
    //`测试:UVA12304`
    int getcircle(Line u,Point q,double r1,circle &c1,circle &c2){
        double dis = u.dispointtoline(q);
        if(sgn(dis-r1*2)>0)return 0;
        if(sgn(dis) == 0){
            c1.p = q + ((u.e-u.s).rotleft().trunc(r1));
            c2.p = q + ((u.e-u.s).rotright().trunc(r1));
            c1.r = c2.r = r1;
            return 2;
        }
        Line u1 = Line((u.s + (u.e-u.s).rotleft().trunc(r1)),(u.e + (u.e-u.s).rotleft().trunc(r1)));
        Line u2 = Line((u.s + (u.e-u.s).rotright().trunc(r1)),(u.e + (u.e-u.s).rotright().trunc(r1)));
        circle cc = circle(q,r1);
        Point p1,p2;
        if(!cc.pointcrossline(u1,p1,p2))cc.pointcrossline(u2,p1,p2);
        c1 = circle(p1,r1);
        if(p1 == p2){
            c2 = c1;
            return 1;
        }
        c2 = circle(p2,r1);
        return 2;
    }
    //`同时与直线u,v相切,半径为r1的圆`
    //`测试:UVA12304`
    int getcircle(Line u,Line v,double r1,circle &c1,circle &c2,circle &c3,circle &c4){
        if(u.parallel(v))return 0;//两直线平行
        Line u1 = Line(u.s + (u.e-u.s).rotleft().trunc(r1),u.e + (u.e-u.s).rotleft().trunc(r1));
        Line u2 = Line(u.s + (u.e-u.s).rotright().trunc(r1),u.e + (u.e-u.s).rotright().trunc(r1));
        Line v1 = Line(v.s + (v.e-v.s).rotleft().trunc(r1),v.e + (v.e-v.s).rotleft().trunc(r1));
        Line v2 = Line(v.s + (v.e-v.s).rotright().trunc(r1),v.e + (v.e-v.s).rotright().trunc(r1));
        c1.r = c2.r = c3.r = c4.r = r1;
        c1.p = u1.crosspoint(v1);
        c2.p = u1.crosspoint(v2);
        c3.p = u2.crosspoint(v1);
        c4.p = u2.crosspoint(v2);
        return 4;
    }
    //`同时与不相交圆cx,cy相切,半径为r1的圆`
    //`测试:UVA12304`
    int getcircle(circle cx,circle cy,double r1,circle &c1,circle &c2){
        circle x(cx.p,r1+cx.r),y(cy.p,r1+cy.r);
        int t = x.pointcrosscircle(y,c1.p,c2.p);
        if(!t)return 0;
        c1.r = c2.r = r1;
        return t;
    }

    //`过一点作圆的切线(先判断点和圆的关系)`
    //`测试:UVA12304`
    int tangentline(Point q,Line &u,Line &v){
        int x = relation(q);
        if(x == 2)return 0;
        if(x == 1){
            u = Line(q,q + (q-p).rotleft());
            v = u;
            return 1;
        }
        double d = p.distance(q);
        double l = r*r/d;
        double h = sqrt(r*r-l*l);
        u = Line(q,p + ((q-p).trunc(l) + (q-p).rotleft().trunc(h)));
        v = Line(q,p + ((q-p).trunc(l) + (q-p).rotright().trunc(h)));
        return 2;
    }
    //`求两圆相交的面积`
    double areacircle(circle v){
        int rel = relationcircle(v);
        if(rel >= 4)return 0.0;
        if(rel <= 2)return min(area(),v.area());
        double d = p.distance(v.p);
        double hf = (r+v.r+d)/2.0;
        double ss = 2*sqrt(hf*(hf-r)*(hf-v.r)*(hf-d));
        double a1 = acos((r*r+d*d-v.r*v.r)/(2.0*r*d));
        a1 = a1*r*r;
        double a2 = acos((v.r*v.r+d*d-r*r)/(2.0*v.r*d));
        a2 = a2*v.r*v.r;
        return a1+a2-ss;
    }
    //`求圆和三角形pab的相交面积`
    //`测试:POJ3675 HDU3982 HDU2892`
    double areatriangle(Point a,Point b){
        if(sgn((p-a)^(p-b)) == 0)return 0.0;
        Point q[5];
        int len = 0;
        q[len++] = a;
        Line l(a,b);
        Point p1,p2;
        if(pointcrossline(l,q[1],q[2])==2){
            if(sgn((a-q[1])*(b-q[1]))<0)q[len++] = q[1];
            if(sgn((a-q[2])*(b-q[2]))<0)q[len++] = q[2];
        }
        q[len++] = b;
        if(len == 4 && sgn((q[0]-q[1])*(q[2]-q[1]))>0)swap(q[1],q[2]);
        double res = 0;
        for(int i = 0;i < len-1;i++){
            if(relation(q[i])==0||relation(q[i+1])==0){
                double arg = p.rad(q[i],q[i+1]);
                res += r*r*arg/2.0;
            }
            else{
                res += fabs((q[i]-p)^(q[i+1]-p))/2.0;
            }
        }
        return res;
    }
};

 

计算几何模板

标签:bsp   scan   圆的切线   90度   测试   规范   int()   enc   tmp   

原文地址:https://www.cnblogs.com/ignorance/p/13340868.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!