标签:检验 port har UNC 消费 tor method 网络io nts
这个版本是最古老的版本,采用原生 POI,手动将 Excel 中的行映射成 ArrayList 对象,然后存储到 List<ArrayList> ,代码执行的步骤如下:
显而易见的,这样实现一定是赶工赶出来的,后续可能用的少也没有察觉到性能问题,但是它最多适用于个位数/十位数级别的数据。存在以下明显的问题:
针对第一版分析的三个问题,分别采用以下三个方法优化
逐行查询数据库校验的时间成本主要在来回的网络IO中,优化方法也很简单。将参加校验的数据全部缓存到 HashMap 中。直接到 HashMap 去命中。
例如:校验行中的房屋是否存在,原本是要用 区域 + 楼宇 + 单元 + 房号 去查询房屋表匹配房屋ID,查到则校验通过,生成的欠单中存储房屋ID,校验不通过则返回错误信息给用户。而房屋信息在导入欠费的时候是不会更新的。并且一个小区的房屋信息也不会很多(5000以内)因此我采用一条SQL,将该小区下所有的房屋以 区域/楼宇/单元/房号 作为 key,以 房屋ID 作为 value,存储到 HashMap 中,后续校验只需要在 HashMap 中命中
Mybatis 原生是不支持将查询到的结果直接写人一个 HashMap 中的,需要自定义 SessionMapper
SessionMapper 中指定使用 MapResultHandler 处理 SQL 查询的结果集
@Repository
public class SessionMapper extends SqlSessionDaoSupport {
@Resource
public void setSqlSessionFactory(SqlSessionFactory sqlSessionFactory) {
super.setSqlSessionFactory(sqlSessionFactory);
}
// 区域楼宇单元房号 - 房屋ID
@SuppressWarnings("unchecked")
public Map<String, Long> getHouseMapByAreaId(Long areaId) {
MapResultHandler handler = new MapResultHandler();
this.getSqlSession().select(BaseUnitMapper.class.getName()+".getHouseMapByAreaId", areaId, handler);
Map<String, Long> map = handler.getMappedResults();
return map;
}
}
MapResultHandler 处理程序,将结果集放入 HashMap
public class MapResultHandler implements ResultHandler {
private final Map mappedResults = new HashMap();
@Override
public void handleResult(ResultContext context) {
@SuppressWarnings("rawtypes")
Map map = (Map)context.getResultObject();
mappedResults.put(map.get("key"), map.get("value"));
}
public Map getMappedResults() {
return mappedResults;
}
}
示例 Mapper
@Mapper
@Repository
public interface BaseUnitMapper {
// 收费标准绑定 区域楼宇单元房号 - 房屋ID
Map<String, Long> getHouseMapByAreaId(@Param("areaId") Long areaId);
}
示例 Mapper.xml
<select id="getHouseMapByAreaId" resultMap="mapResultLong">
SELECT
CONCAT( h.bulid_area_name, h.build_name, h.unit_name, h.house_num ) k,
h.house_id v
FROM
base_house h
WHERE
h.area_id = #{areaId}
GROUP BY
h.house_id
</select>
<resultMap id="mapResultLong" type="java.util.HashMap">
<result property="key" column="k" javaType="string" jdbcType="VARCHAR"/>
<result property="value" column="v" javaType="long" jdbcType="INTEGER"/>
</resultMap>
之后在代码中调用 SessionMapper 类对应的方法即可。
MySQL insert 语句支持使用 values (),(),() 的方式一次插入多行数据,通过 mybatis foreach 结合 java 集合可以实现批量插入,代码写法如下:
<insert id="insertList">
insert into table(colom1, colom2)
values
<foreach collection="list" item="item" index="index" separator=",">
( #{item.colom1}, #{item.colom2})
</foreach>
</insert>
EasyPOI 采用基于注解的导入导出,修改注解就可以修改Excel,非常方便,代码维护起来也容易。
第二版采用 EasyPOI 之后,对于几千、几万的 Excel 数据已经可以轻松导入了,不过耗时有点久(5W 数据 10分钟左右写入到数据库)不过由于后来导入的操作基本都是开发在一边看日志一边导入,也就没有进一步优化。但是好景不长,有新小区需要迁入,票据 Excel 有 41w 行,这个时候使用 EasyPOI 在开发环境跑直接就 OOM 了,增大 JVM 内存参数之后,虽然不 OOM 了,但是 CPU 占用 100% 20 分钟仍然未能成功读取全部数据。故在读取大 Excel 时需要再优化速度。莫非要我这个渣渣去深入 POI 优化了吗?别慌,先上 GITHUB 找找别的开源项目。这时阿里 EasyExcel 映入眼帘:
emmm,这不是为我量身定制的吗!赶紧拿来试试。EasyExcel 采用和 EasyPOI 类似的注解方式读写 Excel,因此从 EasyPOI 切换过来很方便,分分钟就搞定了。也确实如阿里大神描述的: 41w行、25列、45.5m 数据读取平均耗时 50s,因此对于大 Excel 建议使用 EasyExcel 读取。
在第二版插入的时候,我使用了 values 批量插入代替逐行插入。每 30000 行拼接一个长 SQL、顺序插入。整个导入方法这块耗时最多,非常拉跨。后来我将每次拼接的行数减少到 10000、5000、3000、1000、500 发现执行最快的是 1000。结合网上一些对 innodb_buffer_pool_size 描述我猜是因为过长的 SQL 在写操作的时候由于超过内存阈值,发生了磁盘交换。限制了速度,另外测试服务器的数据库性能也不怎么样,过多的插入他也处理不过来。所以最终采用每次 1000 条插入。
每次 1000 条插入后,为了榨干数据库的 CPU,那么网络IO的等待时间就需要利用起来,这个需要多线程来解决,而最简单的多线程可以使用 并行流 来实现,接着我将代码用并行流来测试了一下:
10w行的 excel、42w 欠单、42w记录详情、2w记录、16 线程并行插入数据库、每次 1000 行。插入时间 72s,导入总时间 95 s。
并行插入的代码我封装了一个函数式编程的工具类,也提供给大家
/**
* 功能:利用并行流快速插入数据
*
* @author Keats
* @date 2020/7/1 9:25
*/
public class InsertConsumer {
/**
* 每个长 SQL 插入的行数,可以根据数据库性能调整
*/
private final static int SIZE = 1000;
/**
* 如果需要调整并发数目,修改下面方法的第二个参数即可
*/
static {
System.setProperty("java.util.concurrent.ForkJoinPool.common.parallelism", "4");
}
/**
* 插入方法
*
* @param list 插入数据集合
* @param consumer 消费型方法,直接使用 mapper::method 方法引用的方式
* @param <T> 插入的数据类型
*/
public static <T> void insertData(List<T> list, Consumer<List<T>> consumer) {
if (list == null || list.size() < 1) {
return;
}
List<List<T>> streamList = new ArrayList<>();
for (int i = 0; i < list.size(); i += SIZE) {
int j = Math.min((i + SIZE), list.size());
List<T> subList = list.subList(i, j);
streamList.add(subList);
}
// 并行流使用的并发数是 CPU 核心数,不能局部更改。全局更改影响较大,斟酌
streamList.parallelStream().forEach(consumer);
}
}
这里多数使用到很多 Java8 的API,不了解的朋友可以翻看我之前关于 Java 的博客。方法使用起来很简单
InsertConsumer.insertData(feeList, arrearageMapper::insertList);
避免在 for 循环中打印过多的 info 日志
在优化的过程中,我还发现了一个特别影响性能的东西:info 日志,还是使用 41w行、25列、45.5m 数据,在 开始-数据读取完毕 之间每 1000 行打印一条 info 日志,缓存校验数据-校验完毕 之间每行打印 3+ 条 info 日志,日志框架使用 Slf4j 。打印并持久化到磁盘。下面是打印日志和不打印日志效率的差别
打印日志
不打印日志
我以为是我选错 Excel 文件了,又重新选了一次,结果依旧
缓存校验数据-校验完毕 不打印日志耗时仅仅是打印日志耗时的 1/10 !
提升Excel导入速度的方法:
标签:检验 port har UNC 消费 tor method 网络io nts
原文地址:https://www.cnblogs.com/leskang/p/13358967.html