标签:依次 ups 互联网 部署 因此 简单的 客户 转换 网上
本文已收录GitHub,更有互联网大厂面试真题,面试攻略,高效学习资料等
在阅读之前,我想你很可能已经使用过许多存储层的技术了,例如缓存、文件、关系数据库,甚至一些云上 key-value 的存储服务,但就如同我之前提到的那样,某项具体技术总是相对好学,可对于全栈知识系统地学习,也包括持久层的学习,是一定要立足于技术的基础、原理和本质的。今天,我们要讲的就是其中之一 —— 一致性(Consistency)。
数据的可用性和一致性是很多工程师几乎每天都会挂在嘴边的概念,在存储系统的技术选型上面,一致性将会是我们一个重要的衡量因素,而在持久层架构设计上面,它也将是最重要的思考维度。
数据的一致性不但是数据持久化的一个核心内容,也是学习的一个难点,希望我们一起努力,从原理上去彻底理解它,并学习一些常见的应用模式,做到“知其然,知其所以然”,我们一起把这个难啃的骨头给啃下来。
数据持久化,本质上就是把内存中的数据给转换并写入指定的存储系统中,这个过程是保证数据不丢失的基本方式,而这个存储系统可以具备很多种形式,可以是网络、硬盘文件,也可以是数据库,还可以是前面两讲提到的某种形式的缓存。
你也许听说过对于一致性的不同解释,而我们在谈论数据持久化的时候讲到的一致性,我认为简单来说,指的就是在存储系统中,客户端对数据的读写行为都是可以预期、符合一定规则的。这里有两个值得注意的方面:
我想这个概念并没有什么特殊之处,但是,这里面隐含了一个事情,就是说,为什么要有数据备份呢?
为了可用性(Availability)。
服务为了高可用,就要部署多个节点;数据为了高可用,就要存放多个备份。这里的数据,既包括数据本身,又包括数据的读写服务,这是因为:
那么一环扣一环,如果只有一份数据,是不存在一致性问题的,因为数据自己也只有一份,没法存在不一致,但有了数据副本,一致性就成为了课题。
你很可能已经听说过这三种一致性模型,下面我们来分别了解一下。
强一致性(Strong Consistency):强一致性要求任意时间下,读操作总是能取得最近一次写操作写入的数据。
注意,这里依然是从存储系统客户端的角度来描述的,即便如强一致性的限制,也只要求在读取的时候能读到“最新”的数据就可以了,至于这个在上次写操作之后、这次读操作之前,对存储系统内部的数据是否是“最新”的并无要求。我们经常使用的传统关系型数据库,比如 Oracle、MySQL,它们都是符合强一致性的。
弱一致性(Weak Consistency):弱一致性和强一致性相反,读操作并不能保证可以取得最新一次写操作写入的数据,也就是说,客户端可能读到最新的数据,也可能读不到最新的数据。
这个“并不能保证”就有点“搞笑”了——都不确定能不能读到最新值,那它有什么用?其实它的应用也挺广泛的,最常见的例子就是缓存,比如一个静态资源被浏览器缓存起来,那么这之后只要是从缓存内取得的数据,使用者其实根本不知道这个数据是不是最新的,因为即便它实际有了更新,服务端也不会通知你。
最终一致性(Eventual Consistency):最终一致性介于强一致性和弱一致性之间,写操作之后立即进行读操作,可能无法读到更新后的值,但是如果经过了一个指定的时间窗口,就能保证可以读到那个更新后的值。
最终一致性可能是我们日常生活中最常见的一致性模型了。比如搜索引擎,搜索引擎的爬虫会定期爬取数据,并更新搜索数据,因此如果你的网站只是刚刚更新,可能还无法搜到这个更新内容,但只要是过了一定的时间窗口,它就会出现在搜索结果中了。
接下来,我们探讨互联网应用中最常见的几种架构技术,它们都是用以解决数据可用性的问题,就如同我们在上文中所提到的那样,既包括数据本身的可用性,又包括数据读写服务的可用性。
简单备份(Backup)指的就是定期或按需对存储系统中的数据全量或增量进行复制,并保存为副本,从而降低数据丢失风险的一种方式。
这是一种实现上最简单的技术,在个人电脑上极其常见,但即便在工业界,依然有大量的应用场景。比方说 Amazon RDS(将关系数据库搬到云上)的 Snapshot 技术,可以定期将所有数据导出为一份副本。在 CPU 和 I/O 等资源不成为瓶颈的情况下,因为是异步进行的,简单备份往往对存储系统读写操作的影响很小。
但是,这种方式存在存储系统的单点故障问题,一旦存储系统挂掉了,服务也就中断了,因此基本没法谈可用性。
你可能会说,可用性的话,可以给访问存储的 Web 服务器做双机备份啊。没错,但那解决的是 Web 服务器可用性的问题,并不是我们这里最关心的数据可用性的问题,数据存储依然是单点的。同时,如果什么时候存储系统挂掉了,那么只能恢复到最近一次的备份点,因此可能丢失大量的数据。
Multi-Master 架构是指存在多个 Master(主)节点,各自都提供完整的读写服务,数据备份之间的互相拷贝为了不影响读写请求的性能,通常是异步进行的。
从图中,你可以看到,如果某一主节点对应的存储服务挂掉了,那么还有另一个主节点可以提供对应服务,因此,这种方式是可以提供高可用服务的。图中只放了两个主节点,但是其实是可以放置多个的。
关于一致性,通常情况下节点之间的数据互拷贝是异步进行的,因此是最终一致性。需要说明的是,这个数据互拷贝理论上也是可以做到同步进行的,即将数据拷贝到所有其它的主节点以后再将响应返回给用户,而且那种情况下就可以做到强一致性,不过实际却很少有这样做的,这是为什么呢?
第一个原因,显而易见,同步的数据拷贝会导致整体请求响应的时延增加。
第二个,也是更重要的原因,如果有节点异常,这个拷贝操作就可能会超时或失败,这种情况下,你觉得存储系统应该怎样对待这个错误?显然,存储系统会陷入两难的境地。
如果系统容许错误发生,不返回错误给用户,那么强一致性就无法保证,既然无法保证,那么这个拷贝过程就完全可以设计成异步的,因为既然无论如何也无法保证强一致性,这个同步除了增加时延以外,并未带来任何明显的好处。
如果系统不容许错误发生,即返回错误给用户,一致性就被严格保证了,但是这样的话,整个存储系统就不再是高可用了,因为任何一个主节点的不可用,就会导致其它任意主节点向其拷贝数据的失败,进而导致整个系统都变得不可用。我们使用多个主节点的目的就是要提高可用性,而现在这样的设计和高可用性的目的就自相矛盾了。
其实,对待这个节点间的数据拷贝错误,还有第三种方式,它结合了上述二者的优点。我先卖个关子,我们在下面 Master-Slave 的部分会谈到。
再来说说 Multi-Master 的缺陷。它最大的缺陷是关于事务处理的,本地事务(即单个存储节点)可以提交成功,但是全局事务(所有存储节点)却可能失败。它包含这样两种典型的产生问题的场景:
由于是最终一致性,那么数据丢失也是可能发生的,即在写操作成功而节点间数据拷贝还没完成的时刻,如果主节点挂掉了,那么数据丢失也就发生了,只不过丢失的数据可能相对较少,但是全局事务的完整性就无从谈起了。
如果没有节点异常,主节点 A 的事务提交成功,主节点 B 的事务也提交成功,它们是做到了对本地数据库中事务操作的原子性。可是当进行节点间数据互拷贝时,一旦这两个提交的事务发生冲突(例如修改同一条记录),它们就傻眼了,到底应该以 A 还是以 B的事务为准?这种冲突的解决会比较复杂,而且由于发生在异步的拷贝环节,这时候用户的请求都已经返回响应了,就没法告知用户事务冲突了。
因此,当我们要实现全局事务的时候,Multi-Master 往往不是一个好的选择。
Master-Slave 架构是指存在一个可读可写(或者只写)的 Master 节点,而存在多个只读的 Slave 节点,每当有通过 Master 的更新出现,数据会以异步的方式单向拷贝到所有的Slave 节点上去。
这种方式和 Multi-Master 比起来,将可写的节点数减少为了一个,而允许有多个只读的节点(图中只画了一个,但实际可以有多个),这种方式比较适用互联网较常见的业务,即读远大于写的场景,而且读的可扩展性(Scalability)较强(即增加一个 Slave 节点的代价较小),而且不存在 Multi-Master 的事务冲突问题。
当然了,Master-Slave 的缺点也很明显。既然只有一个可写的节点,那么写的可扩展性就很差了;而且和 Multi-Master 一样,数据从 Master 到 Slave 的拷贝是异步进行的,因此数据存在丢失的可能。
和 Multi-Master 一样,我们当然也可以让数据拷贝变成同步进行的,但是这又存在着上文讨论过的同样的缺陷。但是,有一种介于全同步和全异步之间的缓解这个问题的方法,即“最小副本数量”,比如可能存在 5 个 Slave 节点,但是从 Master 到 Slave 的数据拷贝一旦在 2 个节点成功了,就不用等另外 3 个返回,直接返回用户操作成功。即便那 3 个中存在失败,系统也可以标记失败节点,并按照既定策略自动处理掉,而不影响用户感知。
因此,我们可以说这种数据拷贝的方法是“部分同步”“部分异步”的,既降低了数据丢失的可能,又避免了因为某个 Slave 问题而导致 Master“死等”的情况发生。
最后,值得注意的是,写现在变成单点的了,为了避免单点故障引起的服务中断,一种方式是在 Master 挂掉的时候,Slave 可以挺身而出,变为 Master 顶上去提供写的服务。但是这件事情说说容易,实际要让它自动发生却有大量的工作要做,比如,谁顶上去,以及顶上去了之后,原来以为挂掉的 Master 又活过来了怎么办,等等。
还有其它更为复杂的方法,一种是 2PC 或 3PC,即两阶段提交或三阶段提交,甚至采用高容错的分布式的共识算法 Paxos。这些方法能够保证强一致性,但是在实现上都要复杂许多,我在今天的扩展阅读中会介绍它们。
下面这张比较的表格来自Transactions Across Datacenters这个著名的演讲,这张图在互联网上流传很广。
简单说明一下,从上到下每行的含义依次为:一致性、事务支持、延迟、吞吐量、数据丢失和故障转移(指的是节点出现故障以后,其它节点可以自动顶替上来的能力)。
从中我们可以看到,没有一列能够做到全绿色,这正如我们所知道的那样,软件工程上的问题都“没有银弹”。特别是,Backups、M/S 和 MM 得益于异步的副本拷贝,能够做到低延迟,这就无法做到强一致性;而 2PC 和 Paxos 通过同步操作可以做到强一致性,却带来了高延迟。
本文详细的介绍了数据持久化中一致性的相关概念和实现技术,希望通过本文的讲解,你能做到“知其然,知其所以然”。
现在,我来提一个问题,检验一下你的学习成果。请将下列存储系统按照“强一致性”“弱一致性”和“最终一致性”进行归类:
标签:依次 ups 互联网 部署 因此 简单的 客户 转换 网上
原文地址:https://blog.51cto.com/14637764/2512367