标签:cin int val 归并 ++ 背包 oid vector space
题目链接:https://codeforces.com/contest/1382/problem/D
给出一个大小为 $2n$ 的排列,判断能否找到两个长为 $n$ 的子序列,使得二者归并排序后能够得到该排列。
将原排列拆分为一个个连续子序列,每次从大于上一子序列首部的元素处分出下一连续子序列,只要将这些子序列按照拆分先后排列,归并排序后一定可以得到原排列。
之后即判断能否将这些子序列排列为两个长为 $n$ 的序列即可,可以用状压 $dp$,也可以用 $01$ 背包。
状态 $dp$:每次将之前的每一个可行长度加上当前长度得到新一批的可行长度,然后将当前长度标记为可行。
$01$ 背包:将每个子序列的长度视为其花费与价值,最后判断花费为 $n$ 的背包总价值是否为 $n$ 即可。
状压 $dp$:$O_{(n)}$
#include <bits/stdc++.h>
using namespace std;
void solve() {
int n; cin >> n;
int mx = 0;
vector<int> idx;
for (int i = 0; i < 2 * n; ++i) {
int x; cin >> x;
if (x > mx) {
mx = x;
idx.push_back(i);
}
}
idx.push_back(2 * n);
vector<int> len;
for (int i = 1; i < idx.size(); ++i) {
len.push_back(idx[i] - idx[i - 1]);
}
bitset<2020> dp;
for (auto i : len) {
dp |= dp << i;
dp[i] = 1;
}
cout << (dp[n] ? "YES" : "NO") << "\n";
}
int main() {
int t; cin >> t;
while (t--) solve();
}
$01$ 背包:$O_{(vn)}$
#include <bits/stdc++.h>
using namespace std;
void solve() {
int n; cin >> n;
int mx = 0;
vector<int> idx;
for (int i = 0; i < 2 * n; ++i) {
int x; cin >> x;
if (x > mx) {
mx = x;
idx.push_back(i);
}
}
idx.push_back(2 * n);
int N = idx.size() - 1, p = 0;
int cost[N] = {}, val[N] = {};
for (int i = 1; i < idx.size(); ++i) {
cost[p] = val[p] = idx[i] - idx[i - 1];
++p;
}
map<int, int> dp;
for (int i = 0; i < N; ++i) {
for (int j = n; j >= cost[i]; --j) {
dp[j] = max(dp[j], dp[j - cost[i]] + val[i]);
}
}
cout << (dp[n] == n ? "YES" : "NO") << "\n";
}
int main() {
int t; cin >> t;
while (t--) solve();
}
Codeforces Round #658 (Div. 2) D. Unmerge(dp)
标签:cin int val 归并 ++ 背包 oid vector space
原文地址:https://www.cnblogs.com/Kanoon/p/13360045.html