标签:ems hashset 返回 空间 code ora 实现 nat pytho
给出一个满足下述规则的二叉树:
root.val == 0
如果 treeNode.val == x 且 treeNode.left != null,那么 treeNode.left.val == 2 * x + 1
如果 treeNode.val == x 且 treeNode.right != null,那么 treeNode.right.val == 2 * x + 2
现在这个二叉树受到「污染」,所有的 treeNode.val 都变成了 -1。
请你先还原二叉树,然后实现 FindElements 类:
FindElements(TreeNode* root) 用受污染的二叉树初始化对象,你需要先把它还原。
bool find(int target) 判断目标值 target 是否存在于还原后的二叉树中并返回结果。
示例 1:
输入:
["FindElements","find","find"]
[[[-1,null,-1]],[1],[2]]
输出:
[null,false,true]
解释:
FindElements findElements = new FindElements([-1,null,-1]);
findElements.find(1); // return False
findElements.find(2); // return True
示例 2:
输入:
["FindElements","find","find","find"]
[[[-1,-1,-1,-1,-1]],[1],[3],[5]]
输出:
[null,true,true,false]
解释:
FindElements findElements = new FindElements([-1,-1,-1,-1,-1]);
findElements.find(1); // return True
findElements.find(3); // return True
findElements.find(5); // return False
示例 3:
输入:
["FindElements","find","find","find","find"]
[[[-1,null,-1,-1,null,-1]],[2],[3],[4],[5]]
输出:
[null,true,false,false,true]
解释:
FindElements findElements = new FindElements([-1,null,-1,-1,null,-1]);
findElements.find(2); // return True
findElements.find(3); // return False
findElements.find(4); // return False
findElements.find(5); // return True
提示:
TreeNode.val == -1
二叉树的高度不超过 20
节点的总数在 [1, 10^4] 之间
调用 find() 的总次数在 [1, 10^4] 之间
0 <= target <= 10^6
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/find-elements-in-a-contaminated-binary-tree
很容易想到递归建树,然后把值放在set()中,再递归查找
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class FindElements: def __init__(self, root: TreeNode): self.vis=set() def recover(node): if not node: return node if node.left: node.left.val=2*node.val+1 self.vis.add(node.left.val) if node.right: node.right.val=2*node.val+2 self.vis.add(node.right.val) recover(node.left) recover(node.right) return node root.val=0 self.vis.add(0) self.node=recover(root) def find(self, target: int) -> bool: return target in self.vis # Your FindElements object will be instantiated and called as such: # obj = FindElements(root) # param_1 = obj.find(target)
然而
我就盲猜更好的解法是用二进制
然后猜不下去了
如果我们把树中的数全部加 1
发现每一行的左右子树分别有不同的前缀:
发现0是向左 , 1是向右
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class FindElements: def __init__(self, root: TreeNode): def recover(node): if not node: return node if node.left: node.left.val=2*node.val+1 if node.right: node.right.val=2*node.val+2 recover(node.left) recover(node.right) return node root.val=0 self.node=recover(root) def find(self, target: int) -> bool: node=self.node for binary in bin(target+1)[3:]: node=node and (node.left,node.right)[int(binary)] return bool(node) # Your FindElements object will be instantiated and called as such: # obj = FindElements(root) # param_1 = obj.find(target)
然后
。。。
分析一下复杂度,解法一时间复杂度 O(1),解法二O(1)-Space-O(logn)-Time
总结:解法一空间换时间,解法二可以预防MLE
标签:ems hashset 返回 空间 code ora 实现 nat pytho
原文地址:https://www.cnblogs.com/xxxsans/p/13375631.html