码迷,mamicode.com
首页 > 其他好文 > 详细

并发Bug之源有三,请睁大眼睛看清它们

时间:2020-08-02 10:22:21      阅读:99      评论:0      收藏:0      [点我收藏+]

标签:故事   swap   简单   没有   src   怎么   截取   组元   内存   

写在前面
生活中你一定听说过——能者多劳
作为 Java 程序员,你一定听过——这个功能请求慢,能加一层缓存或优化一下 SQL 吗?
看过中国古代神话故事的也一定听过——天上一天,地上一年

技术图片
一切设计来源于生活,上一章 学并发编程,透彻理解这三个核心是关键 中有讲过,作为"资本家",你要尽可能的榨取 CPU,内存与 IO 的剩余价值,但三者完成任务的速度相差很大,CPU > 内存 > IO分,CPU 是天,那内存就是地,内存是天,那 IO 就是地,那怎样平衡三者,提升整体速度呢?

  1. CPU 增加缓存,还不止一层缓存,平衡内存的慢
  2. CPU 能者多劳,通过分时复用,平衡 IO 的速度差异
  3. 优化编译指令
    上面的方式貌似解决了木桶短板问题,但同时这种解决方案也伴随着产生新的可见性,原子性,和有序性的问题,且看

三大问题
可见性
一个线程对共享变量的修改,另外一个线程能够立刻看到,我们称为可见性

谈到可见性,要先引出 JMM (Java Memory Model) 概念, 即 Java 内存模型,Java 内存模型规定,将所有的变量都存放在 主内存中,当线程使用变量时,会把主内存里面的变量 复制 到自己的工作空间或者叫作 私有内存 ,线程读写变量时操作的是自己工作内存中的变量。

用 Git 的工作流程理解上面的描述就很简单了,Git 远程仓库就是主内存,Git 本地仓库就是自己的工作内存

文字描述有些抽象,我们来图解说明:
技术图片

看这个场景:

  1. 主内存中有变量 x,初始值为 0
  2. 线程 A 要将 x 加 1,先将 x=0 拷贝到自己的私有内存中,然后更新 x 的值
  3. 线程 A 将更新后的 x 值回刷到主内存的时间是不固定的
  4. 刚好在线程 A 没有回刷 x 到主内存时,线程 B 同样从主内存中读取 x,此时为 0,和线程 A 一样的操作,最后期盼的 x=2 就会编程 x=1
    这就是线程可见性的问题

JMM 是一个抽象的概念,在实际实现中,线程的工作内存是这样的:

技术图片
为了平衡内存/IO 短板,会在 CPU 上增加缓存,每个核都只有自己的一级缓存,甚至有一个所有 CPU 都共享的二级缓存,就是上图的样子了,都说这么设计是硬件同学留给软件同学的一个坑,但能否跳过去这个坑也是衡量软件同学是否走向 Java 进阶的关键指标吧......
小提示
从上图中你也可以看出,在 Java 中,所有的实例域,静态域和数组元素都存储在堆内存中,堆内存在线程之间共享,这些在后续文章中都称之为「共享变量」,局部变量,方法定义参数和异常处理器参数不会在线程之间共享,所以他们不会有内存可见性的问题,也就不受内存模型的影响

一句话,要想解决多线程可见性问题,所有线程都必须要刷取主内存中的变量
怎么解决可见性问题呢?Java 关键字 volatile 帮你搞定,后续章节会分析......

原子性
原子(atom)指化学反应不可再分的基本微粒,原子性操作你应该能感受到其含义:
所谓原子操作是指不会被线程调度机制打断的操作;这种操作一旦开始,就一直运行到结束,中间不会有任何 context switch

小品「钟点工」有一句非常经典的台词,要把大象装冰箱,总共分几步?

来看一小段程序:
技术图片

多线程情况下能得到我们期盼的 count = 20000 的值吗?也许有同学会认为,线程调用的 counter 方法只有一个 count++ 操作,是单一操作,所以是原子性的,非也。在线程第一讲中说过我们不能用高级语言思维来理解 CPU 的处理方式,count++ 转换成 CPU 指令则需要三步,通过下面命令解析出汇编指令等信息:

javap -c UnsafeCounter

截取 counter 方法的汇编指令来看:
技术图片

解释一下上面的指令,
16 : 获取当前 count 值,并且放入栈顶
19 : 将常量 1 放入栈顶
20 : 将当前栈顶中两个值相加,并把结果放入栈顶
21 : 把栈顶的结果再赋值给 count

由此可见,简单的 count++ 不是一步操作,被转换为汇编后就不具备原子性了,就好比大象装冰箱,其实要分三步:
第一步,把冰箱门打开;第二步,把大象放进去;第三步,把冰箱门带上

结合 JMM 结构图理解,说明一下为什么很难得到 count=20000 的结果:

技术图片

多线程计数器,如何保证多个操作的原子性呢?最粗暴的方式是在方法上加 synchronized 关键字,比如这样:
技术图片

问题是解决了,如果 synchronized 是万能良方,那么也许并发就没那么多事了,可以靠一个 synchronized 走天下了,事实并不是这样,synchronized 是独占锁 (同一时间只能有一个线程可以调用),没有获取锁的线程会被阻塞;另外也会带来很多线程切换的上下文开销

所以 JDK 中就有了非阻塞 CAS (Compare and Swap) 算法实现的原子操作类 AtomicLong 等工具类,看过源码的同学也许会发现一个共同特点,所有原子类中都有下面这样一段代码:
private static final Unsafe unsafe = Unsafe.getUnsafe();
这个类是 JDK 的 rt.jar 包中的 Unsafe 类提供了 硬件级别 的原子性操作,类中的方法都是 native 修饰的,后面介绍原子类之前也会先说明这个类中的几个方法,这里先简单介绍有个印象即可。

有同学不理解我刚刚提到的线程上下文切换开销很大是什么意思,举 2个例子你就懂了:
你(CPU)在看两本书(两个线程),看第一本书很短时间后要去看第二本书,看第二本书很短时间后又回看第一本书,并要精确的记得看到第几行,当初看到了什么(CPU 记住线程级别的信息),当让你 "同时" 看 10 本甚至更多,切换的开销就很大了吧
综艺节目中有很多游戏,让你一边数钱,又要一边做其他的事,最终保证多样事情都做正确,大脑开销大不大,你试试就知道了

并发Bug之源有三,请睁大眼睛看清它们

标签:故事   swap   简单   没有   src   怎么   截取   组元   内存   

原文地址:https://blog.51cto.com/14888355/2515710

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!