标签:int ble math ast red alt 数组 结果 标记
import tensorflow as tf import numpy as np x = np.array([1, 2, 3, 4]) y = np.array([0,0,1,1]) w = tf.Variable(1.) b = tf.Variable(1.) sigmodX = 1 / (1 + tf.exp(-(w * x + b))) # sigmod 函数 pre_result = tf.round(sigmodX) # 将结果四舍五入 pre_result2 = tf.where(sigmodX < 0.9,1,0) # 阈值设置 pre_bool = tf.equal(pre_result,y) # 预测值四舍五入后与标记值对比,判断预测是否正确 bool_int = tf.cast(pre_bool,tf.float32) # 将bool转化为0,1 accuary = tf.reduce_mean(bool_int) # 对正确结果数组求平均值就是准确率 loss = -(y * tf.math.log(sigmodX) + (1 - y)* tf.math.log(1 - sigmodX)) # 每个样本的损失值 loss_sum = tf.reduce_sum(loss) # 所有样本的损失总和 loss_mean= tf.reduce_mean(loss) # 所有样本的的平均损失 print(‘sigmodX:‘,sigmodX) print(‘pre_result:‘,pre_result) print(‘pre_result2:‘,pre_result2) print(‘pre_bool:‘,pre_bool) print(‘bool_int:‘,bool_int) print(‘accuary:‘,accuary) print(‘loss:‘,loss) print(‘loss_sum:‘,loss_sum) print(‘loss_mean:‘,loss_mean)
标签:int ble math ast red alt 数组 结果 标记
原文地址:https://www.cnblogs.com/cxhzy/p/13433477.html