标签:读卡器 阅读 数据 今天 情况下 数据恢复方法 出现 mamicode 磁盘
在pytorch中,torch.nn.Module模块中的state_dict变量存放训练过程中需要学习的权重和偏执系数,state_dict作为python的字典对象将每一层的参数映射成tensor张量,需要注意的是torch.nn.Module模块中的state_dict只包含卷积层和全连接层的参数,当网络中存在batchnorm时,例如vgg网络结构,torch.nn.Module模块中的state_dict也会存放batchnorm‘s running_mean,关于batchnorm详解可见https://blog.csdn.net/wzy_zju/article/details/81262453
torch.optim模块中的Optimizer优化器对象也存在一个state_dict对象,此处的state_dict字典对象包含state和param_groups的字典对象,而param_groups key对应的value也是一个由学习率,动量等参数组成的一个字典对象。
因为state_dict本质上Python字典对象,所以可以很好地进行保存、更新、修改和恢复操作(python字典结构的特性),从而为PyTorch模型和优化器增加了大量的模块化。
通过一个简单的案例来输出state_dict字典对象中存放的变量
#encoding:utf-8 import torch import torch.nn as nn import torch.optim as optim import torchvision import numpy as mp import matplotlib.pyplot as plt import torch.nn.functional as F #define model class TheModelClass(nn.Module): def __init__(self): super(TheModelClass,self).__init__() self.conv1=nn.Conv2d(3,6,5) self.pool=nn.MaxPool2d(2,2) self.conv2=nn.Conv2d(6,16,5) self.fc1=nn.Linear(16*5*5,120) self.fc2=nn.Linear(120,84) self.fc3=nn.Linear(84,10) def forward(self,x): x=self.pool(F.relu(self.conv1(x))) x=self.pool(F.relu(self.conv2(x))) x=x.view(-1,16*5*5) x=F.relu(self.fc1(x)) x=F.relu(self.fc2(x)) x=self.fc3(x) return x def main(): # Initialize model model = TheModelClass() #Initialize optimizer optimizer=optim.SGD(model.parameters(),lr=0.001,momentum=0.9) #print model‘s state_dict print(‘Model.state_dict:‘) for param_tensor in model.state_dict(): #打印 key value字典 print(param_tensor,‘\t‘,model.state_dict()[param_tensor].size()) #print optimizer‘s state_dict print(‘Optimizer,s state_dict:‘) for var_name in optimizer.state_dict(): print(var_name,‘\t‘,optimizer.state_dict()[var_name]) if __name__==‘__main__‘: main()
output:
Model.state_dict: conv1.weight torch.Size([6, 3, 5, 5]) conv1.bias torch.Size([6]) conv2.weight torch.Size([16, 6, 5, 5]) conv2.bias torch.Size([16]) fc1.weight torch.Size([120, 400]) fc1.bias torch.Size([120]) fc2.weight torch.Size([84, 120]) fc2.bias torch.Size([84]) fc3.weight torch.Size([10, 84]) fc3.bias torch.Size([10]) Optimizer,s state_dict: state {} param_groups [{‘lr‘: 0.001, ‘momentum‘: 0.9, ‘dampening‘: 0, ‘weight_decay‘: 0, ‘nesterov‘: False, ‘params‘: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}]
标签:读卡器 阅读 数据 今天 情况下 数据恢复方法 出现 mamicode 磁盘
原文地址:https://blog.51cto.com/14827913/2517781