码迷,mamicode.com
首页 > 其他好文 > 详细

HotSpot的垃圾回收器

时间:2020-08-18 13:50:45      阅读:54      评论:0      收藏:0      [点我收藏+]

标签:虚拟机   维护   card   产生   垃圾回收   方法   自动   虚拟   限制   

如果说收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。这里讨论的收集器基于JDK 1.7 Update 14之后的 HotSpot 虚拟机,这个虚拟机包含的所有收集器如下图所示

技术图片

上图展示了 7 种作用于不同分代的收集器,如果两个收集器之间存在连线,就说明它们可以搭配使用。虚拟机所处的区域,则表示它是属于新生代收集器还是老年代收集器。接下来将逐一介绍这些收集器的特性、基本原理和使用场景,并重点分析 CMS 和 G1 这两款相对复杂的收集器,了解它们的部分运作细节。

Serial收集器(串行收集器)

Serial 收集器是最基本、发展历史最悠久的收集器,曾经是虚拟机新生代收集的唯一选择。这是一个单线程的收集器,但它的“单线程”的意义并不仅仅说明它只会使用一个 CPU 或一条收集线程去完成垃圾收集工作,更重要的是在它进行垃圾收集时,必须暂停其他所有的工作线程,直到它收集结束。

"Stop The World"这个名字也许听起来很酷,但这项工作实际上是由虚拟机在后台自动发起和自动完成的,在用户不可见的情况下把用户正常工作的线程全部停掉,这对很多应用来说都是难以接受的。下图示意了 Serial/Serial Old 收集器的运行过程。

技术图片

实际上到现在为止,它依然是虚拟机运行在 Client 模式下的默认新生代收集器。它也有着优于其他收集器的地方:简单而高效(与其他收集器的单线程比),对于限定单个 CPU 的环境来说,Serial 收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率。

在用户的桌面应用场景中,分配给虚拟机管理的内存一般来说不会很大,收集几十兆甚至一两百兆的新生代(仅仅是新生代使用的内存,桌面应用基本上不会再大了),停顿时间完全可以控制在几十毫秒最多一百多毫秒以内,只要不是频繁发生,这点停顿是可以接受的。所以,Serial 收集器对于运行在 Client 模式下的虚拟机来说是一个很好的选择。

ParNew收集器

ParNew 收集器其实就是 Serial 收集器的多线程版本,除了使用多条线程进行垃圾收集之外,其余行为包括 Serial 收集器可用的所有控制参数(例如:-XX:SurvivorRatio-XX:PretenureSizeThreshold-XX:HandlePromotionFailure等)、收集算法、Stop The World、对象分配规则、回收策略等都与 Serial 收集器完全一样,在实现上,这两种收集器也共用了相当多的代码。ParNew 收集器的工作过程如下图所示。

技术图片

ParNew 收集器除了多线程收集之外,其他与 Serial 收集器相比并没有太多创新之处,但它却是许多运行在 Server 模式下的虚拟机中首选的新生代收集器,其中有一个与性能无关但很重要的原因是,除了 Serial 收集器外,目前只有它能与 CMS 收集器(并发收集器,后面有介绍)配合工作。

ParNew 收集器在单 CPU 的环境中不会有比 Serial 收集器更好的效果,甚至由于存在线程交互的开销,该收集器在通过超线程技术实现的两个 CPU 的环境中都不能百分之百地保证可以超越 Serial 收集器。

当然,随着可以使用的 CPU 的数量的增加,它对于 GC 时系统资源的有效利用还是很有好处的。它默认开启的收集线程数与 CPU 的数量相同,在 CPU 非常多(如 32 个)的环境下,可以使用-XX:ParallelGCThreads参数来限制垃圾收集的线程数。

注意,从 ParNew 收集器开始,后面还会接触到几款并发和并行的收集器。这里有必要先解释两个名词:并发和并行。这两个名词都是并发编程中的概念,在谈论垃圾收集器的上下文语境中,它们可以解释如下。

  • 并行(Parallel):指多条垃圾收集线程并行工作,但此时用户线程仍然处于等待状态。
  • 并发(Concurrent):指用户线程与垃圾收集线程同时执行(但不一定是并行的,可能会交替执行),用户程序在继续运行,而垃圾收集程序运行于另一个 CPU 上。

Parallel Scavenge收集器

Parallel Scavenge 收集器是一个新生代收集器,它也是使用复制算法的收集器,又是并行的多线程收集器……看上去和 ParNew 都一样,那它有什么特别之处呢?

Parallel Scavenge 收集器的特点是它的关注点与其他收集器不同,CMS 等收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而 Parallel Scavenge 收集器的目标则是达到一个可控制的吞吐量(Throughput)。

所谓吞吐量就是 CPU 用于运行用户代码的时间与 CPU 总消耗时间的比值,即吞吐量=运行用户代码时间/(运行用户代码时间+垃圾收集时间),虚拟机总共运行了 100 分钟,其中垃圾收集花掉1分钟,那吞吐量就是99% 。

停顿时间越短就越适合需要与用户交互的程序,良好的响应速度能提升用户体验,而高吞吐量则可以高效率地利用 CPU 时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。

Parallel Scavenge收集器提供了两个参数用于精确控制吞吐量,分别是控制最大垃圾收集停顿时间的-XX:MaxGCPauseMillis参数以及直接设置吞吐量大小的-XX:GCTimeRatio参数。

MaxGCPauseMillis参数允许的值是一个大于 0 的毫秒数,收集器将尽可能地保证内存回收花费的时间不超过设定值。

不过大家不要认为如果把这个参数的值设置得稍小一点就能使得系统的垃圾收集速度变得更快,GC停顿时间缩短是以牺牲吞吐量和新生代空间来换取的:系统把新生代调小一些,收集 300MB 新生代肯定比收集 500MB 快吧,这也直接导致垃圾收集发生得更频繁一些,原来10秒收集一次、每次停顿100毫秒,现在变成5秒收集一次、每次停顿70毫秒。停顿时间的确在下降,但吞吐量也降下来了。

GCTimeRatio 参数的值应当是一个 0 到 100 的整数,也就是垃圾收集时间占总时间的比率,相当于是吞吐量的倒数。如果把此参数设置为 19,那允许的最大 GC 时间就占总时间的 5%(即 1/(1+19)),默认值为 99 ,就是允许最大 1%(即 1/(1+99))的垃圾收集时间。

由于与吞吐量关系密切,Parallel Scavenge 收集器也经常称为“吞吐量优先”收集器。除上述两个参数之外,Parallel Scavenge 收集器还有一个参数-XX:+UseAdaptiveSizePolicy值得关注。这是一个开关参数,当这个参数打开之后,就不需要手工指定新生代的大小(-Xmn)、Eden 与 Survivor 区的比例(-XX:SurvivorRatio)、晋升老年代对象年龄(-XX:PretenureSizeThreshold)等细节参数了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量,这种调节方式称为 GC 自适应的调节策略(GC Ergonomics)。

Serial Old 收集器

Serial Old 是 Serial 收集器的老年代版本,它同样是一个单线程收集器,使用“标记-整理”算法。这个收集器的主要意义也是在于给 Client 模式下的虚拟机使用。如果在 Server 模式下,那么它主要还有两大用途:一种用途是在 JDK 1.5 以及之前的版本中与 Parallel Scavenge 收集器搭配使用,另一种用途就是作为 CMS 收集器的后备预案,在并发收集发生 Concurrent Mode Failure 时使用。这两点都将在后面的内容中详细讲解。Serial Old 收集器的工作过程如下图所示。

技术图片

Parallel Old收集器

Parallel Old 是 Parallel Scavenge 收集器的老年代版本,使用多线程和“标记-整理”算法。这个收集器是在 JDK 1.6 中才开始提供的,在此之前,新生代的 Parallel Scavenge 收集器一直处于比较尴尬的状态。

原因是,如果新生代选择了 Parallel Scavenge 收集器,老年代除了 Serial Old(PS MarkSweep)收集器外别无选择(Parallel Scavenge 收集器无法与 CMS 收集器配合工作)。

由于老年代 Serial Old 收集器在服务端应用性能上的“拖累”,使用了 Parallel Scavenge 收集器也未必能在整体应用上获得吞吐量最大化的效果,由于单线程的老年代收集中无法充分利用服务器多 CPU 的处理能力,在老年代很大而且硬件比较高级的环境中,这种组合的吞吐量甚至还不一定有 ParNew 加 CMS 的组合“给力”。

直到 Parallel Old 收集器出现后,“吞吐量优先”收集器终于有了比较名副其实的应用组合,在注重吞吐量以及 CPU 资源敏感的场合,都可以优先考虑 Parallel Scavenge 加 Parallel Old 收集器。Parallel Old 收集器的工作过程如下图所示。

技术图片

CMS收集器

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。

目前很大一部分的 Java 应用集中在互联网站或者 B/S 系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。CMS 收集器就非常符合这类应用的需求。

从名字(包含"Mark Sweep")上就可以看出,CMS 收集器是基于“标记—清除”算法实现的,它的运作过程相对于前面几种收集器来说更复杂一些,整个过程分为4个步骤,包括:

  1. 初始标记(CMS initial mark)
  2. 并发标记(CMS concurrent mark)
  3. 重新标记(CMS remark)
  4. 并发清除(CMS concurrent sweep)

其中,初始标记、重新标记这两个步骤仍然需要"Stop The World"。初始标记仅仅只是标记一下 GC Roots 能直接关联到的对象,速度很快,并发标记阶段就是进行 GC RootsTracing 的过程,而重新标记阶段则是为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短。

由于整个过程中耗时最长的并发标记和并发清除过程收集器线程都可以与用户线程一起工作,所以,从总体上来说,CMS 收集器的内存回收过程是与用户线程一起并发执行的。

技术图片

CMS 是一款优秀的收集器,它的主要优点在名字上已经体现出来了:并发收集、低停顿,但是 CMS 还远达不到完美的程度,它有以下 3 个明显的缺点:

第一、导致吞吐量降低。CMS 收集器对 CPU 资源非常敏感。其实,面向并发设计的程序都对 CPU 资源比较敏感。在并发阶段,它虽然不会导致用户线程停顿,但是会因为占用了一部分线程(或者说CPU资源)而导致应用程序变慢,总吞吐量会降低。

CMS 默认启动的回收线程数是(CPU数量+3)/4,也就是当 CPU 在4个以上时,并发回收时垃圾收集线程不少于 25% 的 CPU 资源,并且随着 CPU 数量的增加而下降。但是当 CPU 不足 4 个(譬如2个)时,CMS 对用户程序的影响就可能变得很大,如果本来 CPU 负载就比较大,还分出一半的运算能力去执行收集器线程,就可能导致用户程序的执行速度忽然降低了 50%,其实也让人无法接受。

第二、CMS 收集器无法处理浮动垃圾(Floating Garbage),可能出现"Concurrent Mode Failure"失败而导致另一次 Full GC(新生代和老年代同时回收) 的产生。由于 CMS 并发清理阶段用户线程还在运行着,伴随程序运行自然就还会有新的垃圾不断产生,这一部分垃圾出现在标记过程之后,CMS 无法在当次收集中处理掉它们,只好留待下一次 GC 时再清理掉。这一部分垃圾就称为“浮动垃圾”。

也是由于在垃圾收集阶段用户线程还需要运行,那也就还需要预留有足够的内存空间给用户线程使用,因此 CMS 收集器不能像其他收集器那样等到老年代几乎完全被填满了再进行收集,需要预留一部分空间提供并发收集时的程序运作使用。

在 JDK 1.5 的默认设置下,CMS 收集器当老年代使用了 68% 的空间后就会被激活,这是一个偏保守的设置,如果在应用中老年代增长不是太快,可以适当调高参数-XX:CMSInitiatingOccupancyFraction的值来提高触发百分比,以便降低内存回收次数从而获取更好的性能,在 JDK 1.6 中,CMS 收集器的启动阈值已经提升至 92% 。

要是 CMS 运行期间预留的内存无法满足程序需要,就会出现一次"Concurrent Mode Failure"失败,这时虚拟机将启动后备预案:临时启用 Serial Old 收集器来重新进行老年代的垃圾收集,这样停顿时间就很长了。所以说参数-XX:CM SInitiatingOccupancyFraction设置得太高很容易导致大量"Concurrent Mode Failure"失败,性能反而降低。

第三、产生空间碎片。 CMS 是一款基于“标记—清除”算法实现的收集器,这意味着收集结束时会有大量空间碎片产生。空间碎片过多时,将会给大对象分配带来很大麻烦,往往会出现老年代还有很大空间剩余,但是无法找到足够大的连续空间来分配当前对象,不得不提前触发一次 Full GC 。

为了解决这个问题,CMS 收集器提供了一个-XX:+UseCMSCompactAtFullCollection开关参数(默认就是开启的),用于在CMS收集器顶不住要进行 FullGC 时开启内存碎片的合并整理过程,内存整理的过程是无法并发的,空间碎片问题没有了,但停顿时间不得不变长。虚拟机设计者还提供了另外一个参数-XX:CMSFullGCsBeforeCompaction,这个参数是用于设置执行多少次不压缩的 Full GC 后,跟着来一次带压缩的(默认值为0,表示每次进入Full GC时都进行碎片整理)。

G1收集器

G1(Garbage-First)收集器是当今收集器技术发展的最前沿成果之一,G1 是一款面向服务端应用的垃圾收集器。HotSpot 开发团队赋予它的使命是(在比较长期的)未来可以替换掉 JDK 1.5 中发布的 CMS 收集器。与其他 GC 收集器相比,G1 具备如下特点。

并行与并发: G1 能充分利用多 CPU、多核环境下的硬件优势,使用多个CPU(CPU或者CPU核心)来缩短 Stop-The-World 停顿的时间,部分其他收集器原本需要停顿 Java 线程执行的 GC 动作,G1 收集器仍然可以通过并发的方式让 Java 程序继续执行。

分代收集: 与其他收集器一样,分代概念在 G1 中依然得以保留。虽然 G1 可以不需要其他收集器配合就能独立管理整个 GC 堆,但它能够采用不同的方式去处理新创建的对象和已经存活了一段时间、熬过多次 GC 的旧对象以获取更好的收集效果。

空间整合: 与 CMS 的“标记—清理”算法不同,G1 从整体来看是基于“标记—整理”算法实现的收集器,从局部(两个 Region 之间)上来看是基于“复制”算法实现的,但无论如何,这两种算法都意味着 G1 运作期间不会产生内存空间碎片,收集后能提供规整的可用内存。这种特性有利于程序长时间运行,分配大对象时不会因为无法找到连续内存空间而提前触发下一次 GC 。

可预测的停顿: 这是 G1 相对于 CMS 的另一大优势,降低停顿时间是 G1 和 CMS 共同的关注点,但 G1 除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒,这几乎已经是实时 Java(RTSJ)的垃圾收集器的特征了。

在 G1 之前的其他收集器进行收集的范围都是整个新生代或者老年代,而 G1 不再是这样。使用 G1 收集器时,Java 堆的内存布局就与其他收集器有很大差别,它将整个 Java 堆划分为多个大小相等的独立区域(Region),虽然还保留有新生代和老年代的概念,但新生代和老年代不再是物理隔离的了,它们都是一部分 Region (不需要连续)的集合。

G1 收集器之所以能建立可预测的停顿时间模型,是因为它可以有计划地避免在整个Java堆中进行全区域的垃圾收集。G1 在后台维护一个优先列表,每次根据允许的收集时间,优先回收价值最大的 Region(这也就是Garbage-First名称的来由),保证了 G1 收集器在有限的时间内可以获取尽可能高的收集效率。

在 G1 收集器中,Region 之间的对象引用以及其他收集器中的新生代与老年代之间的对象引用,虚拟机都是使用 Remembered Set 来避免全堆扫描的。

G1 中每个Region 都有一个与之对应的 Remembered Set,虚拟机发现程序在对 Reference 类型的数据进行写操作时,会产生一个 Write Barrier 暂时中断写操作,检查 Reference 引用的对象是否处于不同的 Region 之中(在分代的例子中就是检查是否老年代中的对象引用了新生代中的对象),如果是,便通过 CardTable 把相关引用信息记录到被引用对象所属的 Region 的 Remembered Set 之中。当进行内存回收时,在 GC 根节点的枚举范围中加入 Remembered Set 即可保证不对全堆扫描也不会有遗漏。

如果不计算维护 Remembered Set 的操作,G1 收集器的运作大致可划分为以下几个步骤:

  1. 初始标记(Initial Marking)
  2. 并发标记(Concurrent Marking)
  3. 最终标记(Final Marking)
  4. 筛选回收(Live Data Counting and Evacuation)

G1 的前几个步骤的运作过程和 CMS 有很多相似之处。

初始标记阶段仅仅只是标记一下 GC Roots 能直接关联到的对象,并且修改 TAMS(Next Top at Mark Start)的值,让下一阶段用户程序并发运行时,能在正确可用的 Region 中创建新对象,这阶段需要停顿线程,但耗时很短。

并发标记阶段是从 GC Root 开始对堆中对象进行可达性分析,找出存活的对象,这阶段耗时较长,但可与用户程序并发执行。

而最终标记阶段则是为了修正在并发标记期间因用户程序继续运作而导致标记产生变动的那一部分标记记录,虚拟机将这段时间对象变化记录在线程 Remembered Set Logs 里面,最终标记阶段需要把 Remembered Set Logs 的数据合并到 Remembered Set 中,这阶段需要停顿线程,但是可并行执行。

最后在筛选回收阶段首先对各个 Region 的回收价值和成本进行排序,根据用户所期望的 GC 停顿时间来制定回收计划,从Sun公司透露出来的信息来看,这个阶段其实也可以做到与用户程序一起并发执行,但是因为只回收一部分 Region,时间是用户可控制的,而且停顿用户线程将大幅提高收集效率。通过下图可以比较清楚地看到G1收集器的运作步骤中并发和需要停顿的阶段。

技术图片

 

HotSpot的垃圾回收器

标签:虚拟机   维护   card   产生   垃圾回收   方法   自动   虚拟   限制   

原文地址:https://www.cnblogs.com/mazhimazhi/p/13511728.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!