标签:访问 style info 二叉树的遍历 color 部分 深度优先搜索 所有结点 应用
树的遍历是树的一种重要的运算。所谓遍历是指对树中所有结点的信息的访问,即依次对树中每个结点访问一次且仅访问一次,我们把这种对所有节点的访问称为遍历(traversal)。那么树的两种重要的遍历模式是深度优先遍历和广度优先遍历,深度优先一般用递归,广度优先一般用队列。一般情况下能用递归实现的算法大部分也能用堆栈来实现。
对于一颗二叉树,深度优先搜索(Depth First Search)是沿着树的深度遍历树的节点,尽可能深的搜索树的分支。
那么深度遍历有重要的三种方法。这三种方式常被用于访问树的节点,它们之间的不同在于访问每个节点的次序不同。这三种遍历分别叫做先序遍历(preorder),中序遍历(inorder)和后序遍历(postorder)。我们来给出它们的详细定义,然后举例看看它们的应用。
先序遍历 在先序遍历中,我们先访问根节点,然后递归使用先序遍历访问左子树,再递归使用先序遍历访问右子树
根节点->左子树->右子树
1 def preorder(self, root): 2 """递归实现先序遍历""" 3 if root == None: 4 return 5 print root.elem 6 self.preorder(root.lchild) 7 self.preorder(root.rchild)
中序遍历 在中序遍历中,我们递归使用中序遍历访问左子树,然后访问根节点,最后再递归使用中序遍历访问右子树
左子树->根节点->右子树
1 def inorder(self, root): 2 """递归实现中序遍历""" 3 if root == None: 4 return 5 self.inorder(root.lchild) 6 print root.elem 7 self.inorder(root.rchild)
后序遍历 在后序遍历中,我们先递归使用后序遍历访问左子树和右子树,最后访问根节点
左子树->右子树->根节点
1 def postorder(self, root): 2 """递归实现后续遍历""" 3 if root == None: 4 return 5 self.postorder(root.lchild) 6 self.postorder(root.rchild) 7 print root.elem
标签:访问 style info 二叉树的遍历 color 部分 深度优先搜索 所有结点 应用
原文地址:https://www.cnblogs.com/GouQ/p/13581196.html