码迷,mamicode.com
首页 > 其他好文 > 详细

【源码】FlinkKafkaConsumer 消费 kafka 流程

时间:2020-09-17 13:20:14      阅读:29      评论:0      收藏:0      [点我收藏+]

标签:vat   restore   共享   join   enc   没有   extends   over   ISE   

之前看 Flink Source 的 metrics 时候,看到 FlinkKafkaConsuemr 消费 Kafka 数据的代码,感觉比较有意思,就仔细看下了

大致流程如下:

技术图片

FlinkKafKaConsuemr 的启动流程就不细讲了,直接跳到 FlinkKafkaConsumerBase.run 中,创建 KafkaFetcher,并启动 拉取kafka 数据的循环

@Override
public void run(SourceContext<T> sourceContext) throws Exception {

  // new 一个 KafkaFetcher(消费kafka 的类)
  // from this point forward:
  //   - ‘snapshotState‘ will draw offsets from the fetcher,
  //     instead of being built from `subscribedPartitionsToStartOffsets`
  //   - ‘notifyCheckpointComplete‘ will start to do work (i.e. commit offsets to
  //     Kafka through the fetcher, if configured to do so)
  this.kafkaFetcher = createFetcher(
      sourceContext,
      subscribedPartitionsToStartOffsets,
      watermarkStrategy,
      (StreamingRuntimeContext) getRuntimeContext(),
      offsetCommitMode,
      getRuntimeContext().getMetricGroup().addGroup(KAFKA_CONSUMER_METRICS_GROUP),
      useMetrics);


  // depending on whether we were restored with the current state version (1.3),
  // remaining logic branches off into 2 paths:
  //  1) New state - partition discovery loop executed as separate thread, with this
  //                 thread running the main fetcher loop
  //  2) Old state - partition discovery is disabled and only the main fetcher loop is executed
  if (discoveryIntervalMillis == PARTITION_DISCOVERY_DISABLED) {
    // 执行 拉取 循环
    kafkaFetcher.runFetchLoop();
  } else {
    runWithPartitionDiscovery();
  }
}
private void runWithPartitionDiscovery() throws Exception {
  final AtomicReference<Exception> discoveryLoopErrorRef = new AtomicReference<>();
  createAndStartDiscoveryLoop(discoveryLoopErrorRef);

  kafkaFetcher.runFetchLoop();

  ...
}

再看下 KafkaFetcher 的 runFetchLoop 方法: 启动消费 kafka topic 的线程,并获取数据(同步的 Handover 在两个线程间使用全局变量共享数据)

@Override
public void runFetchLoop() throws Exception {
  try {
    // kick off the actual Kafka consumer
    // 启动消费 Kafka topic 的线程
    consumerThread.start();
    // 无限循环,从 handover 中获取 kafka 数据
    while (running) {
      // this blocks until we get the next records
      // it automatically re-throws exceptions encountered in the consumer thread
      // 从 handover 取 消费出来的 kafka 数据
      final ConsumerRecords<byte[], byte[]> records = handover.pollNext();

      // get the records for each topic partition
      // 获取订阅分区的数据
      for (KafkaTopicPartitionState<T, TopicPartition> partition : subscribedPartitionStates()) {

        List<ConsumerRecord<byte[], byte[]>> partitionRecords =
          records.records(partition.getKafkaPartitionHandle());
        // 处理 一下
        partitionConsumerRecordsHandler(partitionRecords, partition);
      }
    }
  }
  finally {
    // this signals the consumer thread that no more work is to be done
    consumerThread.shutdown();
  }

  // on a clean exit, wait for the runner thread
  try {
    consumerThread.join();
  }
  catch (InterruptedException e) {
    // may be the result of a wake-up interruption after an exception.
    // we ignore this here and only restore the interruption state
    Thread.currentThread().interrupt();
  }
}


protected void partitionConsumerRecordsHandler(
    List<ConsumerRecord<byte[], byte[]>> partitionRecords,
    KafkaTopicPartitionState<T, TopicPartition> partition) throws Exception {

  for (ConsumerRecord<byte[], byte[]> record : partitionRecords) {
    // 反序列化 数据
    deserializer.deserialize(record, kafkaCollector);

    // emit the actual records. this also updates offset state atomically and emits
    // watermarks
    // emit 数据 带上 timestamp(这里也可以看出,从kafka 消费的数据,
    // 带着 数据的 分区、offset、timestamp 信息,这些属性在下游使用正确的姿势,都是可以在 下游算子获取到的)
    emitRecordsWithTimestamps(
      kafkaCollector.getRecords(),
      partition,
      record.offset(),
      record.timestamp());

    if (kafkaCollector.isEndOfStreamSignalled()) {
      // end of stream signaled
      running = false;
      break;
    }
  }
}

Fetcher 线程就是这样的

看下 consumerThread , KafkaFetcher 初始化的时候,会同时创建一个 KafkaConsumerThread 的对象,KafkaConsumerThread 集成了 Thread 类,所以是多线程的

public class KafkaConsumerThread<T> extends Thread
@Override
public void run() {

  // this is the means to talk to FlinkKafkaConsumer‘s main thread
  // 中转 对象
  final Handover handover = this.handover;

  // This method initializes the KafkaConsumer and guarantees it is torn down properly.
  // This is important, because the consumer has multi-threading issues,
  // including concurrent ‘close()‘ calls.
  try {
    // 消费线程启动的时候,会创建 kafka consumer
    this.consumer = getConsumer(kafkaProperties);
  }
  catch (Throwable t) {
    handover.reportError(t);
    return;
  }

  // from here on, the consumer is guaranteed to be closed properly
  try {
    // register Kafka‘s very own metrics in Flink‘s metric reporters
    if (useMetrics) {
      // register Kafka metrics to Flink
      // 注册 kafka 的 metrics 到 Flink 中,从 webUi 的 metrics 可以找到 kafka 的metrics
      Map<MetricName, ? extends Metric> metrics = consumer.metrics();
      if (metrics == null) {
        // MapR‘s Kafka implementation returns null here.
        log.info("Consumer implementation does not support metrics");
      } else {
        // we have Kafka metrics, register them
        for (Map.Entry<MetricName, ? extends Metric> metric: metrics.entrySet()) {
          consumerMetricGroup.gauge(metric.getKey().name(), new KafkaMetricWrapper(metric.getValue()));

          // TODO this metric is kept for compatibility purposes; should remove in the future
          subtaskMetricGroup.gauge(metric.getKey().name(), new KafkaMetricWrapper(metric.getValue()));
        }
      }
    }
    // main fetch loop
    // 主要的消费 无限循环()
    while (running) {

      // check if there is something to commit
      // 提交 kafka 的 offset 
      if (!commitInProgress) {
        // get and reset the work-to-be committed, so we don‘t repeatedly commit the same
        final Tuple2<Map<TopicPartition, OffsetAndMetadata>, KafkaCommitCallback> commitOffsetsAndCallback =
            nextOffsetsToCommit.getAndSet(null);

        if (commitOffsetsAndCallback != null) {
          log.debug("Sending async offset commit request to Kafka broker");

          // also record that a commit is already in progress
          // the order here matters! first set the flag, then send the commit command.
          commitInProgress = true;
          consumer.commitAsync(commitOffsetsAndCallback.f0, new CommitCallback(commitOffsetsAndCallback.f1));
        }
      }

      // get the next batch of records, unless we did not manage to hand the old batch over
      // 只有 records 是 null 的时候,才 poll 数据,不然就覆盖了(这里涉及到多线程调用,如果当前线程在 wait 或 就绪状态 就会没办法 转移 records )
      if (records == null) {
        try {
          records = consumer.poll(pollTimeout);
        }
        catch (WakeupException we) {
          continue;
        }
      }

      try {
        // 处理消费到的数据
        handover.produce(records);
        records = null;
      }
      catch (Handover.WakeupException e) {
        // fall through the loop
      }
   

  }
}

KafkaConsuemrThread 做的事情就是,从Kafka 消费数据,通过 handover.producer 转移数据

下面就到了中转数据的 Handover 类了
贴下 Handover 类的注释:

/**
 * The Handover is a utility to hand over data (a buffer of records) and exception from a
 * <i>producer</i> thread to a <i>consumer</i> thread. It effectively behaves like a
 * "size one blocking queue", with some extras around exception reporting, closing, and
 * waking up thread without {@link Thread#interrupt() interrupting} threads.
 *
 * <p>This class is used in the Flink Kafka Consumer to hand over data and exceptions between
 * the thread that runs the KafkaConsumer class and the main thread.
 *
 * <p>The Handover has the notion of "waking up" the producer thread with a {@link WakeupException}
 * rather than a thread interrupt.
 *
 * <p>The Handover can also be "closed", signalling from one thread to the other that it
 * the thread has terminated.
 */

Handover 是一种实用程序,用于将数据(记录的缓冲区)和异常从<i>生产者</i>线程移交给<i>消费者</i>线程。 它的行为实际上像一个“阻塞队列”,围绕异常报告,关闭和唤醒线程而没有{@link Thread#interrupt()中断}线程。
<p> Flink Kafka Consumer中使用该类在运行KafkaConsumer类的线程与主线程之间移交数据和异常。
<p>切换的概念是使用{@link WakeupException}而不是线程中断来“唤醒”生产者线程。
<p>还可以“关闭”切换,从一个线程向另一线程发信号,表明该线程已终止。

看下对应代码: 两个同步方法,生产和消费数据,使用全局变量 next 中转,使用 同步代码块 保证数据的一致性

// 同步对象
private final Object lock = new Object();
// 全局变量,数据交换用
private ConsumerRecords<byte[], byte[]> next;

// 消费线程
public ConsumerRecords<byte[], byte[]> pollNext() throws Exception {
  // 进入同步方法(加锁)
  synchronized (lock) {
    // 如果 next 是 null 的,调用 wait 是消费线程 等待(释放锁,等待生产线程唤醒)
    while (next == null && error == null) {
      lock.wait();
    }
    // 将 next 的值赋给 局部变量 n
    ConsumerRecords<byte[], byte[]> n = next;
    // 如果 n 不为 null
    if (n != null) {
      // 将 next 设为 null
      next = null;
      // 唤醒 生产线程
      lock.notifyAll();
      // 返回 n 到 KafkaFetcher
      return n;
    }
    else {
      ExceptionUtils.rethrowException(error, error.getMessage());

      // this statement cannot be reached since the above method always throws an exception
      // this is only here to silence the compiler and any warnings
      return ConsumerRecords.empty();
    }
  }
}
// 生产线程
public void produce(final ConsumerRecords<byte[], byte[]> element)
    throws InterruptedException, WakeupException, ClosedException {
  // 进入同步代码块(加锁)
  synchronized (lock) {
    // 如果 全局变量 next 不为空,调用 wait 使线程进入等待 (释放锁,等待消费线程唤醒)
    while (next != null && !wakeupProducer) {
      lock.wait();
    }

    wakeupProducer = false;

    // if there is still an element, we must have been woken up
    // 到这来不等于 null 就说明多线程异常了,主动抛出异常
    if (next != null) {
      throw new WakeupException();
    }
    // if there is no error, then this is open and can accept this element
    else if (error == null) {
      // next 是 null 的,把从 kafka 消费出来的数据,放到全局变量 next 中
      next = element;
      // 调用 notifyAll 方法,唤醒 消费线程
      lock.notifyAll();
    }
    // an error marks this as closed for the producer
    else {
      throw new ClosedException();
    }
  }
  // 出同步方法,释放锁
}

整个流程如上面的流程图: KafkaFetcher 启动 kafkaConsumerThread 线程,KafkaConsumerThread (循环)从 kafka 消费到数据后,使用 Handover 的同步方法,转移数据,KafkaFetcher (循环)同样调用 Handover 的同步方法 获取 KafkaConsumerThread 消费出来的数据

欢迎关注Flink菜鸟公众号,会不定期更新Flink(开发技术)相关的推文

技术图片

【源码】FlinkKafkaConsumer 消费 kafka 流程

标签:vat   restore   共享   join   enc   没有   extends   over   ISE   

原文地址:https://www.cnblogs.com/Springmoon-venn/p/13614670.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!