Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is
11
(i.e., 2 + 3 +
5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where
n is the total number of rows in the triangle.
构造一个与给定三角形同样形状的三角形,每个节点记录从根到这个节点的最小路径。
计算每个节点的从根最小距离只依赖于上面节点的状况:
由此可以依次计算出每个节点的最小路径。
如果记录整个三角形需要O(n^2)的空间。 但是由于每行的计算只依赖于上一行的内容,所以空间复杂度可以只用O(n)。
int minimumTotal(vector<vector<int> > &triangle) { // c++ int rows = triangle.size(); //check null if(rows == 0) return 0; vector<int> record(rows,triangle[0][0]); int prej; //use prej to record record[j-1] before update //tmp remember record[j] before update; for(int i = 1; i < triangle.size(); i++) for(int j = 0; j < triangle[i].size(); j++){ if(j == 0){ prej = record[j]; record[j] += triangle[i][j]; } // record[j] = record[j-1] + triangle[i][j]; else if(j == triangle[i].size()-1){ int tmp = record[j]; record[j] = prej + triangle[i][j]; prej = tmp; } // record[j] = ((record[j] < record[j-1])? record[j] : record[j-1]) + triangle[i][j]; else{ int tmp = record[j]; record[j] = ((record[j] < prej)? record[j] : prej) + triangle[i][j]; prej = tmp; } } //find minmum int min = record[0]; for(int i = 1; i < record.size(); i++) if(record[i] < min) min = record[i]; return min; }
原文地址:http://blog.csdn.net/chenlei0630/article/details/41018013