码迷,mamicode.com
首页 > 其他好文 > 详细

Flink(二)【架构原理,组件,提交流程】

时间:2020-09-18 03:25:46      阅读:38      评论:0      收藏:0      [点我收藏+]

标签:k8s   内部使用   col   设置   心跳包   shuffle   并且   核心   最大的   

一.运行架构

1.架构

基于yarn模式

技术图片

0) Flink任务提交后,Client向HDFS上传Flink的Jar包和配置
1) 向Yarn ResourceManager提交任务,
2) ResourceManager分配Container资源,Yarn通知NodeManager启动ApplicationMaster,ApplicationMaster启动后加载Flink的Jar包和配置构建环境,然后启动JobManager
3) Client提交Job给Dispatcher
4) Dispatcher将JobGraph转发给JobManager
5) JobManager向Flink ResourceManager申请资源启动
6) Flink ResourceManager向Yarn申请资源TaskManager
7) Yarn ResourceManager分配Container资源。
8) Flink ResourceManager向通知资源所在的NodeMananger启动TaskManager
9) NodeManager加载Flink的jar和配置环境启动TaskManager,反向JobManager发送心跳包,等待任务
10) JobManager将执行的任务发送给TaskManager执行。

2.组件

Application Master 部分包含了三个组件:

1) Dispatcher

负责接收用户提供的作业,并且负责为这个新提交的作业启动一个新的 JobManager 组件

2) ResourceManager

负责资源的管理,在整个 Flink 集群中只有一个 ResourceManager

3) JobManager

负责管理作业的执行,在一个 Flink 集群中可能有多个作业同时执行,每个作业 都有自己的 JobManager 组件

还有其他组件:

1) TaskManager

主要负责执行具体的task任务,从JobManager处接收需要部署的 Task,部署 启 动后,与自己的上游建立连接,接收数据并处理。

2) Cluster Manager

集群管理器,比如Standalone、YARN、K8s等。

3) Client

提交Job的客户端,可以是运行在任何机器上(与 JobManager 环境连通即可)。提交Job后,Client可以结束进程(Streaming的任务),也可以不结束并等待结果返回。

二.核心概念

TaskManager 、 Slots

  • Taskmanager 类比 Spark 的Excutor

    1个Taskmanager,1个JVM进程,运行多个线程Task,Task的个数等于Slot的个数。类似Spark的Excutor。

  • Slot 类比 Spark的Core

    相同点

    1个Slot启动1个线程,Slot的个数决定最大并行的Task数

    不同点

    ①Slot多个Job共享,当空闲时其他Job可以使用(Yarn Session-Cluster模式);

    Core只能当前Job内部使用,其他Job无法使用

    ②TaskManager的内存均分给Slot,意味Slot是内存空间,不是Spark的Core。

Parallelism(并行度)

正在执行的task数,就是当前的并行度

  • 设置并行度

Spark:调用特殊算子(repartition)或者Shuffle。

Flink:可以直接给算子设置并行度,或者全局设置

注意:某些数据源数据的采集是无法改变并行度,如Socket

某个算子并行度2那么这个算子对应得task会拆分成2个subtask,一个特定算子的subtask的个数被称之为其并行度(parallelism),一般情况下,一个流程序的并行度是其所有算子中最大的并行度

Task 、Subtask

  • Task

可以理解为Spark的一个Stage中的并行度将不同算子的subtask组成的1个任务链,作为1个task执行

  • Subtask

可以理解为1个算子有2个并行度,那么这个算子所在的Task就会拆分成两个SubTask。

Operator Chains(任务链)

技术图片

可以理解为Spark中的一个Stage的同一分区的多个转换算子在1个task运行。

任务链形成条件:one-to-one的数据传输并且并行度相同

ExecutionGraph(执行图)任务生成过程

①client生成Sream Graph(数据流图)

②client 根据Sream Graph(数据流图)满足one to one 就转换成操作链,转换为 JobGraph(任务图)

③client将JobGraph(任务图)提交给JobManager,JobManager根据JobGraph(任务图)生成ExecutionGraph(执行图),然后展开并行度,转换为物理执行图,提交给TaskManager运行。

提交流程

通用的提交流程

技术图片

基于yarn的提交流程

技术图片

Flink(二)【架构原理,组件,提交流程】

标签:k8s   内部使用   col   设置   心跳包   shuffle   并且   核心   最大的   

原文地址:https://www.cnblogs.com/wh984763176/p/13680907.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!