标签:信息 定义 恶意攻击 开启 read oop 假设 初始化 inf
三次握手是指建立一个TCP连接时,需要客户端和服务器总共发送3个包。进行三次挥手的主要作用就是为了确认双方的接受能力和发送能力是否正常,以及指定自己的初始化序列号为后面的可靠性传输作准备。本质上就是连接服务器指定端口,建立TCP连接,并同步连接双方的序列号和确认号,交换TCP窗口大小信息。三次握手的一个重要功能是客户端和服务器端交换ISN(Initial Sequence Number),以便让对方知道接下来接受数据的时候如何按序列号组装数据。
起初客户端处于CLOSED状态,服务端处于LISTEN状态。
三次握手:
在socket编程中,客户端执行connect()时,将触发三次挥手。
简单来说即:
连接请求报文
,其中TCP标志位里SYN=1,ACK=0,选择一个初始的序号x。连接确认报文
,SYN=1,ACK=1,确认号为 x+1,同时也选择一个初始的序号 y。发出确认
,确认号为 y+1,序号为 x+1。连接建立
。第三次握手目的是防止失效的连接请求到达服务器,让服务器错误的打开连接。
弄清这个问题,我们需要先弄明白三次握手的目的是什么,能不能只用两次握手来达到同样的目的。
因此,需要三次握手才能确认双方的接收与发送能力是否正常。
试想如果是用两次握手,则会出现下面这种情况:
如客户端发出连接请求,但因连接请求报文丢失而未收到确认,于是客户端再重传一次连接请求。后来收到了确认,建立了连接。数据传输完毕后,就释放了连接,客户端共发出了两个连接请求报文段,其中第一个丢失,第二个到达了服务端,但是第一个丢失的报文段只是在某些网络结点长时间滞留了,延误到连接释放以后的某个时间才到达服务端,此时服务端误认为客户端又发出一次新的连接请求,于是就向客户端发出确认报文段,同意建立连接,不采用三次握手,只要服务端发出确认,就建立新的连接了,此时客户端忽略服务端发来的确认,也不发送数据,则服务端一致等待客户端发送数据,浪费资源。
其实第三次握手的时候,是可以携带数据的。但是,第一次、第二次握手不可以携带数据。
为什么这样呢?大家可以想一个问题,假如第一次握手可以携带数据的话,如果有人要恶意攻击服务器,那他每次都在第一次握手中的 SYN 报文中放入大量的数据。因为攻击者根本就不理服务器的接收、发送能力是否正常,然后疯狂着重复发 SYN 报文的话,这会让服务器花费很多时间、内存空间来接收这些报文。
也就是说,第一次握手不可以放数据,其中一个简单的原因就是会让服务器更加容易受到攻击了。而对于第三次的话,此时客户端已经处于 ESTABLISHED 状态。对于客户端来说,他已经建立起连接了,并且也已经知道服务器的接收、发送能力是正常的了,所以能携带数据也没啥毛病。
三次握手建立连接的首要目的是同步序列号
。只有同步了序列号才有可靠的传输,TCP 协议的许多特性都是依赖序列号实现的,比如流量控制、消息丢失后的重发等等,这也是三次握手中的报文被称为 SYN 的原因。
客户端发送 SYN 开启了三次握手,之后客户端连接的状态是 SYN_SENT,然后等待服务器回复 ACK 报文。正常情况下,服务器会在几毫秒内返回 ACK,但如果客户端迟迟没有收到 ACK 会怎么样呢?客户端会重发 SYN,重试的次数由 tcp_syn_retries
参数控制,默认是 6 次:
1
|
net.ipv4.tcp_syn_retries = 6
|
第 1 次重试发生在 1 秒钟后,接着会以翻倍的方式在第 2、4、8、16、32 秒共做 6 次重试,最后一次重试会等待 64 秒,如果仍然没有返回 ACK,才会终止三次握手。所以,总耗时是 1+2+4+8+16+32+64=127 秒
,超过 2 分钟。
如果这是一台有明确任务的服务器,你可以根据网络的稳定性和目标服务器的繁忙程度修改重试次数,调整客户端的三次握手时间上限。比如内网中通讯时,就可以适当调低重试次数,尽快把错误暴露给应用程序。
当服务器收到 SYN 报文后,服务器会立刻回复 SYN+ACK
报文,既确认了客户端的序列号,也把自己的序列号发给了对方
。此时,服务器端出现了新连接,状态是 SYN_RCVD。这个状态下,服务器必须建立一个 SYN 半连接队列
来维护未完成的握手信息,当这个队列溢出后,服务器将无法再建立新连接。
如果 SYN 半连接队列已满,只能丢弃连接吗?并不是这样,开启 syncookies
功能就可以在不使用 SYN 队列的情况下成功建立连接。syncookies 是这么做的:服务器根据当前状态计算出一个值,放在己方发出的 SYN+ACK 报文中发出,当客户端返回 ACK 报文时,取出该值验证,如果合法,就认为连接建立成功,如下图所示。
Linux 下怎样开启 syncookies 功能呢?修改 tcp_syncookies
参数即可,其中值为 0 时表示关闭该功能,2 表示无条件开启功能,而 1 则表示仅当 SYN 半连接队列放不下时,再启用它。由于 syncookie 仅用于应对 SYN 泛洪攻击
(攻击者恶意构造大量的 SYN 报文发送给服务器,造成 SYN 半连接队列溢出,导致正常客户端的连接无法建立),这种方式建立的连接,许多 TCP 特性都无法使用。所以,应当把 tcp_syncookies 设置为 1,仅在队列满时再启用
。
当客户端接收到服务器发来的 SYN+ACK 报文后,就会回复 ACK 去通知服务器,同时己方连接状态从 SYN_SENT 转换为 ESTABLISHED,表示连接建立成功。服务器端连接成功建立的时间还要再往后,到它收到 ACK 后状态才变为 ESTABLISHED。如果服务器没有收到 ACK,就会一直重发 SYN+ACK 报文。当网络繁忙、不稳定时,报文丢失就会变严重,此时应该调大重发次数。反之则可以调小重发次数。
tcp_synack_retries
的默认重试次数是5 次
,与客户端重发 SYN 类似,它的重试会经历 1、2、4、8、16 秒,最后一次重试后等待 32 秒,若仍然没有收到 ACK,才会关闭连接,故共需要等待 63 秒
。
服务器收到 ACK 后连接建立成功,此时,内核会把连接从 SYN 半连接队列中移出,再移入 accept 队列,等待进程调用 accept 函数时把连接取出来
。如果进程不能及时地调用 accept 函数,就会造成 accept 队列溢出,最终导致建立好的 TCP 连接被丢弃。
实际上,丢弃连接只是 Linux 的默认行为,我们还可以选择向客户端发送 RST 复位报文
,告诉客户端连接已经建立失败
。打开这一功能需要将 tcp_abort_on_overflow
参数设置为 1。
建立一个连接需要三次握手,而终止一个连接要经过四次挥手(也有将四次挥手叫做四次握手的)。这由TCP的半关闭(half-close)造成的。所谓的半关闭
,其实就是TCP提供了连接的一端在结束它的发送后还能接收来自另一端数据的能力。
TCP 连接的拆除需要发送四个包,因此称为四次挥手(Four-way handshake),客户端或服务端均可主动发起挥手动作。
刚开始双方都处于ESTABLISHED
状态,假如是客户端先发起关闭请求。四次挥手的过程如下:
FIN_WAIT1
状态。CLOSE_WAIT
状态。LAST_ACK
的状态。TIME_WAIT
状态。需要过一阵子以确保服务端收到自己的 ACK 报文之后才会进入 CLOSED 状态,服务端收到 ACK 报文之后,就处于关闭连接了,处于 CLOSED
状态。收到一个FIN只意味着在这一方向上没有数据流动。客户端执行主动关闭并进入TIME_WAIT是正常的,服务端通常执行被动关闭,不会进入TIME_WAIT状态。
在socket编程中,任何一方执行close()操作即可产生挥手操作。
四次挥手涉及两种报文:FIN 和 ACK。FIN 就是 Finish 结束连接的意思,谁发出 FIN 报文,就表示它将不再发送任何数据,关闭这一方向的传输通道。ACK 是 Acknowledge 确认的意思,它用来通知对方:你方的发送通道已经关闭
。
四次挥手过程总结:
FIN_WAIT1
。当被动方收到 FIN 报文后,内核自动回复 ACK 报文,连接状态由 ESTABLISHED 变为 CLOSE_WAIT
,顾名思义,它在等待进程调用 close 函数关闭连接。当主动方接收到这个 ACK 报文后,连接状态由 FIN_WAIT1 变为 FIN_WAIT2
,主动方的发送通道就关闭了。close 函数
,进而触发内核发送 FIN 报文,此时被动方连接的状态变为 LAST_ACK
。当主动方收到这个 FIN 报文时,内核会自动回复 ACK,同时连接的状态由 FIN_WAIT2 变为 TIME_WAIT,Linux 系统下大约 1 分钟
后 TIME_WAIT 状态的连接才会彻底关闭。而被动方收到 ACK 报文后,连接就会关闭。 这是因为 TCP 不允许连接处于半打开状态
时就单向传输数据,所以在三次握手建立连接时,服务器会把 ACK 和 SYN 放在一起发给客户端,其中,ACK 用来打开客户端的发送通道,SYN 用来打开服务器的发送通道。这样,原本的四次握手就降为三次握手了。但是当连接处于半关闭状态
时,TCP 是允许单向传输数据的。为便于理解,我们把先关闭连接的一方叫做主动方,后关闭连接的一方叫做被动方。当主动方关闭连接时,被动方仍然可以在不调用 close 函数的状态下,长时间发送数据,此时连接处于半关闭状态。这一特性是 TCP 的双向通道互相独立所致
,却也使得关闭连接必须通过四次挥手才能做到。
TIME_WAIT状态也称为2MSL等待状态
。每个具体TCP实现必须选择一个报文段最大生存时间MSL(Maximum Segment Lifetime),它是任何报文段被丢弃前在网络内的最长时间。这个时间是有限的,因为TCP报文段以IP数据报在网络内传输,而IP数据报则有限制其生存时间的TTL字段。
对一个具体实现所给定的MSL值,处理的原则是:当TCP执行一个主动关闭,并发回最后一个ACK,该连接必须在TIME_WAIT状态停留的时间为2倍的MSL。这样可让TCP再次发送最后的ACK以防这个ACK丢失(另一端超时并重发最后的FIN)。
这种2MSL等待的另一个结果是这个TCP连接在2MSL等待期间,定义这个连接的插口(客户的IP地址和端口号,服务器的IP地址和端口号)不能再被使用。这个连接只能在2MSL结束后才能再被使用。
MSL是Maximum Segment Lifetime的英文缩写,可译为“最长报文段寿命”,它是任何报文在网络上存在的最长时间,超过这个时间报文将被丢弃。
为了保证客户端发送的最后一个ACK报文段能够到达服务器。因为这个ACK有可能丢失,从而导致处在LAST-ACK状态的服务器收不到对FIN-ACK的确认报文。服务器会超时重传这个FIN-ACK,接着客户端再重传一次确认,重新启动时间等待计时器
。最后客户端和服务器都能正常的关闭。假设客户端不等待2MSL,而是在发送完ACK之后直接释放关闭,一但这个ACK丢失的话,服务器就无法正常的进入关闭连接状态。
TIME_WAIT 状态的连接,在主动方看来确实已经关闭了。然而,被动方没有收到 ACK 报文前,连接还处于 LAST_ACK 状态。如果这个 ACK 报文没有到达被动方,被动方就会重发
FIN 报文。
如果主动方不保留 TIME_WAIT 状态,会发生什么呢?
此时连接的端口恢复了自由身,可以复用于新连接了
。然而,被动方的 FIN 报文可能再次到达,这既可能是网络中的路由器重复发送,也有可能是被动方没收到 ACK 时基于 tcp_orphan_retries 参数重发。这样,正常通讯的新连接就可能被重复发送的 FIN 报文误关闭
。保留 TIME_WAIT 状态,就可以应付重发的 FIN 报文,当然,其他数据报文也有可能重发,所以 TIME_WAIT 状态还能避免数据错乱。
理论上,四个报文都发送完毕,就可以直接进入CLOSE状态了,但是可能网络是不可靠的,有可能最后一个ACK丢失。所以TIME_WAIT状态就是用来重发可能丢失的ACK报文。
保证客户端发送的最后一个ACK报文段能够到达服务端。
这个ACK报文段有可能丢失,使得处于LAST-ACK状态的服务端收不到对已发送的FIN+ACK报文段的确认,服务端超时重传FIN+ACK报文段,而客户端能在2MSL时间内收到这个重传的FIN+ACK报文段,接着客户端重传一次确认,重新启动2MSL计时器,最后客户端和服务端都进入到CLOSED状态,若客户端在TIME-WAIT状态不等待一段时间,而是发送完ACK报文段后立即释放连接,则无法收到服务端重传的FIN+ACK报文段,所以不会再发送一次确认报文段,则服务端无法正常进入到CLOSED状态。
2. 防止“已失效的连接请求报文段”出现在本连接中。
客户端在发送完最后一个ACK报文段后,再经过2MSL,就可以使本连接持续的时间内所产生的所有报文段都从网络中消失,使下一个新的连接中不会出现这种旧的连接请求报文段。(1)TIME_WAIT确保有足够的时间让对端收到了ACK,如果被动关闭的那方没有收到Ack,就会触发被动端重发Fin,一来一去正好2个MSL
,2)有足够的时间让这个连接不会跟后面的连接混在一起(有些自做主张的路由器会缓存IP数据包,如果连接被重用了,那么这些延迟收到的包就有可能会跟新连接混在一起)。
参考:
《TCP/IP详解 卷1:协议》
https://yuanrengu.com/2020/77eef79f.html
状态转换伪代码
https://coolshell.cn/articles/11564.html
极客时间:系统性能调优必知必会
标签:信息 定义 恶意攻击 开启 read oop 假设 初始化 inf
原文地址:https://www.cnblogs.com/PALETTE-8M/p/13765978.html