码迷,mamicode.com
首页 > 其他好文 > 详细

在Pandas Dataframe中遍历行的不同方法

时间:2020-10-26 11:38:27      阅读:23      评论:0      收藏:0      [点我收藏+]

标签:isp   方法   splay   output   button   attribute   nat   for   container   

 

Python是进行数据分析的一种出色语言,主要是因为以数据为中心的Python软件包具有奇妙的生态系统。Pandas是其中的一种,使导入和分析数据更加容易。

让我们看看在Pandas Dataframe中遍历行的不同方法

方法#1:使用Dataframe的index属性。

# import pandas package as pd 
import pandas as pd 

# Define a dictionary containing students data 
data = {Name: [Ankit, Amit, Aishwarya, Priyanka], 
                Age: [21, 19, 20, 18], 
                Stream: [Math, Commerce, Arts, Biology], 
                Percentage: [88, 92, 95, 70]} 

# Convert the dictionary into DataFrame 
df = pd.DataFrame(data, columns = [Name, Age, Stream, Percentage]) 

print("Given Dataframe :\n", df) 

print("\nIterating over rows using index attribute :\n") 

# iterate through each row and select 
# Name and Stream column respectively. 
for ind in df.index: 
    print(df[Name][ind], df[Stream][ind]) 
输出:Given Dataframe :         Name Age Stream Percentage
0      Ankit   21      Math          88
1       Amit   19  Commerce          92
2  Aishwarya   20      Arts          95
3   Priyanka   18   Biology          70

Iterating over rows using index attribute :

Ankit Math
Amit Commerce
Aishwarya Arts
Priyanka Biology

 

方法2:使用数据框的loc []函数。
# import pandas package as pd 
import pandas as pd 

# Define a dictionary containing students data 
data = {Name: [Ankit, Amit, Aishwarya, Priyanka], 
                Age: [21, 19, 20, 18], 
                Stream: [Math, Commerce, Arts, Biology], 
                Percentage: [88, 92, 95, 70]} 

# Convert the dictionary into DataFrame 
df = pd.DataFrame(data, columns = [Name, Age, Stream, Percentage]) 

print("Given Dataframe :\n", df) 

print("\nIterating over rows using loc function :\n") 

# iterate through each row and select 
# Name and Age column respectively. 
for i in range(len(df)) : 
print(df.loc[i, "Name"], df.loc[i, "Age"]) 

输出:

Given Dataframe :
         Name  Age    Stream  Percentage
0      Ankit   21      Math          88
1       Amit   19  Commerce          92
2  Aishwarya   20      Arts          95
3   Priyanka   18   Biology          70

Iterating over rows using loc function :

Ankit 21
Amit 19
Aishwarya 20
Priyanka 18

 


方法3:使用DataFrame的iloc []函数。

# import pandas package as pd 
import pandas as pd 

# Define a dictionary containing students data 
data = {Name: [Ankit, Amit, Aishwarya, Priyanka], 
                Age: [21, 19, 20, 18], 
                Stream: [Math, Commerce, Arts, Biology], 
                Percentage: [88, 92, 95, 70]} 

# Convert the dictionary into DataFrame 
df = pd.DataFrame(data, columns = [Name, Age, Stream, Percentage]) 

print("Given Dataframe :\n", df) 

print("\nIterating over rows using iloc function :\n") 

# iterate through each row and select 
# 0th and 2nd index column respectively. 
for i in range(len(df)) : 
print(df.iloc[i, 0], df.iloc[i, 2]) 
输出:
Given Dataframe :
         Name  Age    Stream  Percentage
0      Ankit   21      Math          88
1       Amit   19  Commerce          92
2  Aishwarya   20      Arts          95
3   Priyanka   18   Biology          70

Iterating over rows using iloc function :

Ankit Math
Amit Commerce
Aishwarya Arts
Priyanka Biology

 

方法4:使用数据框的iterrows()方法。

# import pandas package as pd 
import pandas as pd 

# Define a dictionary containing students data 
data = {Name: [Ankit, Amit, Aishwarya, Priyanka], 
                Age: [21, 19, 20, 18], 
                Stream: [Math, Commerce, Arts, Biology], 
                Percentage: [88, 92, 95, 70]} 

# Convert the dictionary into DataFrame 
df = pd.DataFrame(data, columns = [Name, Age, Stream, Percentage]) 

print("Given Dataframe :\n", df) 

print("\nIterating over rows using iterrows() method :\n") 

# iterate through each row and select 
# Name and Age column respectively. 
for index, row in df.iterrows(): 
    print (row["Name"], row["Age"]) 

输出:

Given Dataframe :
         Name  Age    Stream  Percentage
0      Ankit   21      Math          88
1       Amit   19  Commerce          92
2  Aishwarya   20      Arts          95
3   Priyanka   18   Biology          70

Iterating over rows using iterrows() method :

Ankit 21
Amit 19
Aishwarya 20
Priyanka 18

 


方法5:使用数据框的itertuples()方法。

# import pandas package as pd 
import pandas as pd 

# Define a dictionary containing students data 
data = {Name: [Ankit, Amit, Aishwarya, Priyanka], 
                Age: [21, 19, 20, 18], 
                Stream: [Math, Commerce, Arts, Biology], 
                Percentage: [88, 92, 95, 70]} 

# Convert the dictionary into DataFrame 
df = pd.DataFrame(data, columns = [Name, Age, Stream, Percentage]) 

print("Given Dataframe :\n", df) 

print("\nIterating over rows using itertuples() method :\n") 

# iterate through each row and select 
# Name and Percentage column respectively. 
for row in df.itertuples(index = True, name =Pandas): 
    print (getattr(row, "Name"), getattr(row, "Percentage")) 

输出:

Given Dataframe :
         Name  Age    Stream  Percentage
0      Ankit   21      Math          88
1       Amit   19  Commerce          92
2  Aishwarya   20      Arts          95
3   Priyanka   18   Biology          70

Iterating over rows using itertuples() method :

Ankit 88
Amit 92
Aishwarya 95
Priyanka 70

方法6:使用数据框的apply()方法。

# import pandas package as pd 
import pandas as pd 

# Define a dictionary containing students data 
data = {Name: [Ankit, Amit, Aishwarya, Priyanka], 
                Age: [21, 19, 20, 18], 
                Stream: [Math, Commerce, Arts, Biology], 
                Percentage: [88, 92, 95, 70]} 

# Convert the dictionary into DataFrame 
df = pd.DataFrame(data, columns = [Name, Age, Stream, Percentage]) 

print("Given Dataframe :\n", df) 

print("\nIterating over rows using apply function :\n") 

# iterate through each row and concatenate 
# Name and Percentage column respectively. 
print(df.apply(lambda row: row["Name"] + " " + str(row["Percentage"]), axis = 1)) 

输出:

Given Dataframe :
         Name  Age    Stream  Percentage
0      Ankit   21      Math          88
1       Amit   19  Commerce          92
2  Aishwarya   20      Arts          95
3   Priyanka   18   Biology          70

Iterating over rows using apply function :

0        Ankit 88
1         Amit 92
2    Aishwarya 95
3     Priyanka 70
dtype: object

 

 

在Pandas Dataframe中遍历行的不同方法

标签:isp   方法   splay   output   button   attribute   nat   for   container   

原文地址:https://www.cnblogs.com/a00ium/p/13874873.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!