标签:des style http io color ar os 使用 java
一、vector与ArrayList区别
package java.util;
public class Vector<E>
extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
protected Object[] elementData;
protected int elementCount;
protected int capacityIncrement;
private static final long serialVersionUID = -2767605614048989439L;
public Vector(int initialCapacity, int capacityIncrement) {
super();
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
this.elementData = new Object[initialCapacity];
this.capacityIncrement = capacityIncrement;
}
public Vector(int initialCapacity) {
this(initialCapacity, 0);
}
public Vector() {
this(10);
}
public Vector(Collection<? extends E> c) {
elementData = c.toArray();
elementCount = elementData.length;
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
}
public synchronized void copyInto(Object[] anArray) {
System.arraycopy(elementData, 0, anArray, 0, elementCount);
}
/**
* Trims the capacity of this vector to be the vector‘s current
* size. If the capacity of this vector is larger than its current
* size, then the capacity is changed to equal the size by replacing
* its internal data array, kept in the field {@code elementData},
* with a smaller one. An application can use this operation to
* minimize the storage of a vector.
*/
public synchronized void trimToSize() {
modCount++;
int oldCapacity = elementData.length;
if (elementCount < oldCapacity) {
elementData = Arrays.copyOf(elementData, elementCount);
}
}
public synchronized void ensureCapacity(int minCapacity) {
modCount++;
ensureCapacityHelper(minCapacity);
}
/**
* This implements the unsynchronized semantics of ensureCapacity.
* Synchronized methods in this class can internally call this
* method for ensuring capacity without incurring the cost of an
* extra synchronization.
*
* @see #ensureCapacity(int)
*/
private void ensureCapacityHelper(int minCapacity) {
int oldCapacity = elementData.length;
if (minCapacity > oldCapacity) {
Object[] oldData = elementData;
int newCapacity = (capacityIncrement > 0) ?
(oldCapacity + capacityIncrement) : (oldCapacity * 2);
if (newCapacity < minCapacity) {
newCapacity = minCapacity;
}
elementData = Arrays.copyOf(elementData, newCapacity);
}
}
/**
* Sets the size of this vector. If the new size is greater than the
* current size, new {@code null} items are added to the end of
* the vector. If the new size is less than the current size, all
* components at index {@code newSize} and greater are discarded.
*
* @param newSize the new size of this vector
* @throws ArrayIndexOutOfBoundsException if the new size is negative
*/
public synchronized void setSize(int newSize) {
modCount++;
if (newSize > elementCount) {
ensureCapacityHelper(newSize);
} else {
for (int i = newSize ; i < elementCount ; i++) {
elementData[i] = null;
}
}
elementCount = newSize;
}
/**
* Returns the current capacity of this vector.
*
* @return the current capacity (the length of its internal
* data array, kept in the field {@code elementData}
* of this vector)
*/
public synchronized int capacity() {
return elementData.length;
}
/**
* Returns the number of components in this vector.
*
* @return the number of components in this vector
*/
public synchronized int size() {
return elementCount;
}
/**
* Tests if this vector has no components.
*
* @return {@code true} if and only if this vector has
* no components, that is, its size is zero;
* {@code false} otherwise.
*/
public synchronized boolean isEmpty() {
return elementCount == 0;
}
/**
* Returns an enumeration of the components of this vector. The
* returned {@code Enumeration} object will generate all items in
* this vector. The first item generated is the item at index {@code 0},
* then the item at index {@code 1}, and so on.
*
* @return an enumeration of the components of this vector
* @see Iterator
*/
public Enumeration<E> elements() {
return new Enumeration<E>() {
int count = 0;
public boolean hasMoreElements() {
return count < elementCount;
}
public E nextElement() {
synchronized (Vector.this) {
if (count < elementCount) {
return (E)elementData[count++];
}
}
throw new NoSuchElementException("Vector Enumeration");
}
};
}
/**
* Returns {@code true} if this vector contains the specified element.
* More formally, returns {@code true} if and only if this vector
* contains at least one element {@code e} such that
* <tt>(o==null ? e==null : o.equals(e))</tt>.
*
* @param o element whose presence in this vector is to be tested
* @return {@code true} if this vector contains the specified element
*/
public boolean contains(Object o) {
return indexOf(o, 0) >= 0;
}
/**
* Returns the index of the first occurrence of the specified element
* in this vector, or -1 if this vector does not contain the element.
* More formally, returns the lowest index {@code i} such that
* <tt>(o==null ? get(i)==null : o.equals(get(i)))</tt>,
* or -1 if there is no such index.
*
* @param o element to search for
* @return the index of the first occurrence of the specified element in
* this vector, or -1 if this vector does not contain the element
*/
public int indexOf(Object o) {
return indexOf(o, 0);
}
/**
* Returns the index of the first occurrence of the specified element in
* this vector, searching forwards from {@code index}, or returns -1 if
* the element is not found.
* More formally, returns the lowest index {@code i} such that
* <tt>(i >= index && (o==null ? get(i)==null : o.equals(get(i))))</tt>,
* or -1 if there is no such index.
*
* @param o element to search for
* @param index index to start searching from
* @return the index of the first occurrence of the element in
* this vector at position {@code index} or later in the vector;
* {@code -1} if the element is not found.
* @throws IndexOutOfBoundsException if the specified index is negative
* @see Object#equals(Object)
*/
public synchronized int indexOf(Object o, int index) {
if (o == null) {
for (int i = index ; i < elementCount ; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = index ; i < elementCount ; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
/**
* Returns the index of the last occurrence of the specified element
* in this vector, or -1 if this vector does not contain the element.
* More formally, returns the highest index {@code i} such that
* <tt>(o==null ? get(i)==null : o.equals(get(i)))</tt>,
* or -1 if there is no such index.
*
* @param o element to search for
* @return the index of the last occurrence of the specified element in
* this vector, or -1 if this vector does not contain the element
*/
public synchronized int lastIndexOf(Object o) {
return lastIndexOf(o, elementCount-1);
}
/**
* Returns the index of the last occurrence of the specified element in
* this vector, searching backwards from {@code index}, or returns -1 if
* the element is not found.
* More formally, returns the highest index {@code i} such that
* <tt>(i <= index && (o==null ? get(i)==null : o.equals(get(i))))</tt>,
* or -1 if there is no such index.
*
* @param o element to search for
* @param index index to start searching backwards from
* @return the index of the last occurrence of the element at position
* less than or equal to {@code index} in this vector;
* -1 if the element is not found.
* @throws IndexOutOfBoundsException if the specified index is greater
* than or equal to the current size of this vector
*/
public synchronized int lastIndexOf(Object o, int index) {
if (index >= elementCount)
throw new IndexOutOfBoundsException(index + " >= "+ elementCount);
if (o == null) {
for (int i = index; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
for (int i = index; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
/**
* Returns the component at the specified index.
*
* <p>This method is identical in functionality to the {@link #get(int)}
* method (which is part of the {@link List} interface).
*
* @param index an index into this vector
* @return the component at the specified index
* @throws ArrayIndexOutOfBoundsException if the index is out of range
* ({@code index < 0 || index >= size()})
*/
public synchronized E elementAt(int index) {
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
}
return (E)elementData[index];
}
/**
* Returns the first component (the item at index {@code 0}) of
* this vector.
*
* @return the first component of this vector
* @throws NoSuchElementException if this vector has no components
*/
public synchronized E firstElement() {
if (elementCount == 0) {
throw new NoSuchElementException();
}
return (E)elementData[0];
}
/**
* Returns the last component of the vector.
*
* @return the last component of the vector, i.e., the component at index
* <code>size() - 1</code>.
* @throws NoSuchElementException if this vector is empty
*/
public synchronized E lastElement() {
if (elementCount == 0) {
throw new NoSuchElementException();
}
return (E)elementData[elementCount - 1];
}
/**
* Sets the component at the specified {@code index} of this
* vector to be the specified object. The previous component at that
* position is discarded.
*
* <p>The index must be a value greater than or equal to {@code 0}
* and less than the current size of the vector.
*
* <p>This method is identical in functionality to the
* {@link #set(int, Object) set(int, E)}
* method (which is part of the {@link List} interface). Note that the
* {@code set} method reverses the order of the parameters, to more closely
* match array usage. Note also that the {@code set} method returns the
* old value that was stored at the specified position.
*
* @param obj what the component is to be set to
* @param index the specified index
* @throws ArrayIndexOutOfBoundsException if the index is out of range
* ({@code index < 0 || index >= size()})
*/
public synchronized void setElementAt(E obj, int index) {
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " +
elementCount);
}
elementData[index] = obj;
}
public synchronized void removeElementAt(int index) {
modCount++;
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " +
elementCount);
}
else if (index < 0) {
throw new ArrayIndexOutOfBoundsException(index);
}
int j = elementCount - index - 1;
if (j > 0) {
System.arraycopy(elementData, index + 1, elementData, index, j);
}
elementCount--;
elementData[elementCount] = null; /* to let gc do its work */
}
/**
* Inserts the specified object as a component in this vector at the
* specified {@code index}. Each component in this vector with
* an index greater or equal to the specified {@code index} is
* shifted upward to have an index one greater than the value it had
* previously.
*
* <p>The index must be a value greater than or equal to {@code 0}
* and less than or equal to the current size of the vector. (If the
* index is equal to the current size of the vector, the new element
* is appended to the Vector.)
*
* <p>This method is identical in functionality to the
* {@link #add(int, Object) add(int, E)}
* method (which is part of the {@link List} interface). Note that the
* {@code add} method reverses the order of the parameters, to more closely
* match array usage.
*
* @param obj the component to insert
* @param index where to insert the new component
* @throws ArrayIndexOutOfBoundsException if the index is out of range
* ({@code index < 0 || index > size()})
*/
public synchronized void insertElementAt(E obj, int index) {
modCount++;
if (index > elementCount) {
throw new ArrayIndexOutOfBoundsException(index
+ " > " + elementCount);
}
ensureCapacityHelper(elementCount + 1);
System.arraycopy(elementData, index, elementData, index + 1, elementCount - index);
elementData[index] = obj;
elementCount++;
}
/**
* Adds the specified component to the end of this vector,
* increasing its size by one. The capacity of this vector is
* increased if its size becomes greater than its capacity.
*
* <p>This method is identical in functionality to the
* {@link #add(Object) add(E)}
* method (which is part of the {@link List} interface).
*
* @param obj the component to be added
*/
public synchronized void addElement(E obj) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = obj;
}
/**
* Removes the first (lowest-indexed) occurrence of the argument
* from this vector. If the object is found in this vector, each
* component in the vector with an index greater or equal to the
* object‘s index is shifted downward to have an index one smaller
* than the value it had previously.
*
* <p>This method is identical in functionality to the
* {@link #remove(Object)} method (which is part of the
* {@link List} interface).
*
* @param obj the component to be removed
* @return {@code true} if the argument was a component of this
* vector; {@code false} otherwise.
*/
public synchronized boolean removeElement(Object obj) {
modCount++;
int i = indexOf(obj);
if (i >= 0) {
removeElementAt(i);
return true;
}
return false;
}
/**
* Removes all components from this vector and sets its size to zero.
*
* <p>This method is identical in functionality to the {@link #clear}
* method (which is part of the {@link List} interface).
*/
public synchronized void removeAllElements() {
modCount++;
// Let gc do its work
for (int i = 0; i < elementCount; i++)
elementData[i] = null;
elementCount = 0;
}
/**
* Returns a clone of this vector. The copy will contain a
* reference to a clone of the internal data array, not a reference
* to the original internal data array of this {@code Vector} object.
*
* @return a clone of this vector
*/
public synchronized Object clone() {
try {
Vector<E> v = (Vector<E>) super.clone();
v.elementData = Arrays.copyOf(elementData, elementCount);
v.modCount = 0;
return v;
} catch (CloneNotSupportedException e) {
// this shouldn‘t happen, since we are Cloneable
throw new InternalError();
}
}
/**
* Returns an array containing all of the elements in this Vector
* in the correct order.
*
* @since 1.2
*/
public synchronized Object[] toArray() {
return Arrays.copyOf(elementData, elementCount);
}
public synchronized <T> T[] toArray(T[] a) {
if (a.length < elementCount)
return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());
System.arraycopy(elementData, 0, a, 0, elementCount);
if (a.length > elementCount)
a[elementCount] = null;
return a;
}
// Positional Access Operations
/**
* Returns the element at the specified position in this Vector.
*
* @param index index of the element to return
* @return object at the specified index
* @throws ArrayIndexOutOfBoundsException if the index is out of range
* ({@code index < 0 || index >= size()})
* @since 1.2
*/
public synchronized E get(int index) {
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);
return (E)elementData[index];
}
/**
* Replaces the element at the specified position in this Vector with the
* specified element.
*
* @param index index of the element to replace
* @param element element to be stored at the specified position
* @return the element previously at the specified position
* @throws ArrayIndexOutOfBoundsException if the index is out of range
* ({@code index < 0 || index >= size()})
* @since 1.2
*/
public synchronized E set(int index, E element) {
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);
Object oldValue = elementData[index];
elementData[index] = element;
return (E)oldValue;
}
/**
* Appends the specified element to the end of this Vector.
*
* @param e element to be appended to this Vector
* @return {@code true} (as specified by {@link Collection#add})
* @since 1.2
*/
public synchronized boolean add(E e) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = e;
return true;
}
public boolean remove(Object o) {
return removeElement(o);
}
public void add(int index, E element) {
insertElementAt(element, index);
}
public synchronized E remove(int index) {
modCount++;
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);
Object oldValue = elementData[index];
int numMoved = elementCount - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--elementCount] = null; // Let gc do its work
return (E)oldValue;
}
public void clear() {
removeAllElements();
}
// Bulk Operations
public synchronized boolean containsAll(Collection<?> c) {
return super.containsAll(c);
}
public synchronized boolean addAll(Collection<? extends E> c) {
modCount++;
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityHelper(elementCount + numNew);
System.arraycopy(a, 0, elementData, elementCount, numNew);
elementCount += numNew;
return numNew != 0;
}
public synchronized boolean removeAll(Collection<?> c) {
return super.removeAll(c);
}
public synchronized boolean retainAll(Collection<?> c) {
return super.retainAll(c);
}
public synchronized boolean addAll(int index, Collection<? extends E> c) {
modCount++;
if (index < 0 || index > elementCount)
throw new ArrayIndexOutOfBoundsException(index);
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityHelper(elementCount + numNew);
int numMoved = elementCount - index;
if (numMoved > 0)
System.arraycopy(elementData, index, elementData, index + numNew,
numMoved);
System.arraycopy(a, 0, elementData, index, numNew);
elementCount += numNew;
return numNew != 0;
}
/**
* Compares the specified Object with this Vector for equality. Returns
* true if and only if the specified Object is also a List, both Lists
* have the same size, and all corresponding pairs of elements in the two
* Lists are <em>equal</em>. (Two elements {@code e1} and
* {@code e2} are <em>equal</em> if {@code (e1==null ? e2==null :
* e1.equals(e2))}.) In other words, two Lists are defined to be
* equal if they contain the same elements in the same order.
*
* @param o the Object to be compared for equality with this Vector
* @return true if the specified Object is equal to this Vector
*/
public synchronized boolean equals(Object o) {
return super.equals(o);
}
/**
* Returns the hash code value for this Vector.
*/
public synchronized int hashCode() {
return super.hashCode();
}
/**
* Returns a string representation of this Vector, containing
* the String representation of each element.
*/
public synchronized String toString() {
return super.toString();
}
public synchronized List<E> subList(int fromIndex, int toIndex) {
return Collections.synchronizedList(super.subList(fromIndex, toIndex),
this);
}
protected synchronized void removeRange(int fromIndex, int toIndex) {
modCount++;
int numMoved = elementCount - toIndex;
System.arraycopy(elementData, toIndex, elementData, fromIndex,
numMoved);
// Let gc do its work
int newElementCount = elementCount - (toIndex-fromIndex);
while (elementCount != newElementCount)
elementData[--elementCount] = null;
}
private synchronized void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException
{
s.defaultWriteObject();
}
}
package java.util;
import java.io.*;
public class HashMap<K,V>
extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable
{
/**
* The default initial capacity - MUST be a power of two.
*/
static final int DEFAULT_INITIAL_CAPACITY = 16;
/**
* The maximum capacity, used if a higher value is implicitly specified
* by either of the constructors with arguments.
* MUST be a power of two <= 1<<30.
*/
static final int MAXIMUM_CAPACITY = 1 << 30;
/**
* The load factor used when none specified in constructor.
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;
/**
* The table, resized as necessary. Length MUST Always be a power of two.
*/
transient Entry[] table;
/**
* The number of key-value mappings contained in this map.
*/
transient int size;
/**
* The next size value at which to resize (capacity * load factor).
* @serial
*/
int threshold;
/**
* The load factor for the hash table.
*
* @serial
*/
final float loadFactor;
/**
* The number of times this HashMap has been structurally modified
* Structural modifications are those that change the number of mappings in
* the HashMap or otherwise modify its internal structure (e.g.,
* rehash). This field is used to make iterators on Collection-views of
* the HashMap fail-fast. (See ConcurrentModificationException).
*/
transient volatile int modCount;
/**
* Constructs an empty <tt>HashMap</tt> with the specified initial
* capacity and load factor.
*
* @param initialCapacity the initial capacity
* @param loadFactor the load factor
* @throws IllegalArgumentException if the initial capacity is negative
* or the load factor is nonpositive
*/
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
// Find a power of 2 >= initialCapacity
int capacity = 1;
while (capacity < initialCapacity)
capacity <<= 1;
this.loadFactor = loadFactor;
threshold = (int)(capacity * loadFactor);
table = new Entry[capacity];
init();
}
/**
* Constructs an empty <tt>HashMap</tt> with the specified initial
* capacity and the default load factor (0.75).
*
* @param initialCapacity the initial capacity.
* @throws IllegalArgumentException if the initial capacity is negative.
*/
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
/**
* Constructs an empty <tt>HashMap</tt> with the default initial capacity
* (16) and the default load factor (0.75).
*/
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR;
threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
table = new Entry[DEFAULT_INITIAL_CAPACITY];
init();
}
/**
* Constructs a new <tt>HashMap</tt> with the same mappings as the
* specified <tt>Map</tt>. The <tt>HashMap</tt> is created with
* default load factor (0.75) and an initial capacity sufficient to
* hold the mappings in the specified <tt>Map</tt>.
*
* @param m the map whose mappings are to be placed in this map
* @throws NullPointerException if the specified map is null
*/
public HashMap(Map<? extends K, ? extends V> m) {
this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
putAllForCreate(m);
}
// internal utilities
/**
* Initialization hook for subclasses. This method is called
* in all constructors and pseudo-constructors (clone, readObject)
* after HashMap has been initialized but before any entries have
* been inserted. (In the absence of this method, readObject would
* require explicit knowledge of subclasses.)
*/
void init() {
}
/**
* Applies a supplemental hash function to a given hashCode, which
* defends against poor quality hash functions. This is critical
* because HashMap uses power-of-two length hash tables, that
* otherwise encounter collisions for hashCodes that do not differ
* in lower bits. Note: Null keys always map to hash 0, thus index 0.
*/
static int hash(int h) {
// This function ensures that hashCodes that differ only by
// constant multiples at each bit position have a bounded
// number of collisions (approximately 8 at default load factor).
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
return h & (length-1);
}
/**
* Returns the number of key-value mappings in this map.
*
* @return the number of key-value mappings in this map
*/
public int size() {
return size;
}
/**
* Returns <tt>true</tt> if this map contains no key-value mappings.
*
* @return <tt>true</tt> if this map contains no key-value mappings
*/
public boolean isEmpty() {
return size == 0;
}
/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
*
* <p>More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code (key==null ? k==null :
* key.equals(k))}, then this method returns {@code v}; otherwise
* it returns {@code null}. (There can be at most one such mapping.)
*
* <p>A return value of {@code null} does not <i>necessarily</i>
* indicate that the map contains no mapping for the key; it‘s also
* possible that the map explicitly maps the key to {@code null}.
* The {@link #containsKey containsKey} operation may be used to
* distinguish these two cases.
*
* @see #put(Object, Object)
*/
public V get(Object key) {
if (key == null)
return getForNullKey();
int hash = hash(key.hashCode());
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
return e.value;
}
return null;
}
/**
* Offloaded version of get() to look up null keys. Null keys map
* to index 0. This null case is split out into separate methods
* for the sake of performance in the two most commonly used
* operations (get and put), but incorporated with conditionals in
* others.
*/
private V getForNullKey() {
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null)
return e.value;
}
return null;
}
/**
* Returns <tt>true</tt> if this map contains a mapping for the
* specified key.
*
* @param key The key whose presence in this map is to be tested
* @return <tt>true</tt> if this map contains a mapping for the specified
* key.
*/
public boolean containsKey(Object key) {
return getEntry(key) != null;
}
/**
* Returns the entry associated with the specified key in the
* HashMap. Returns null if the HashMap contains no mapping
* for the key.
*/
final Entry<K,V> getEntry(Object key) {
int hash = (key == null) ? 0 : hash(key.hashCode());
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
}
return null;
}
/**
* Associates the specified value with the specified key in this map.
* If the map previously contained a mapping for the key, the old
* value is replaced.
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous value associated with <tt>key</tt>, or
* <tt>null</tt> if there was no mapping for <tt>key</tt>.
* (A <tt>null</tt> return can also indicate that the map
* previously associated <tt>null</tt> with <tt>key</tt>.)
*/
public V put(K key, V value) {
if (key == null)
return putForNullKey(value);
int hash = hash(key.hashCode());
int i = indexFor(hash, table.length);
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
addEntry(hash, key, value, i);
return null;
}
/**
* Offloaded version of put for null keys
*/
private V putForNullKey(V value) {
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
addEntry(0, null, value, 0);
return null;
}
// These methods are used when serializing HashSets
int capacity() { return table.length; }
float loadFactor() { return loadFactor; }
}
public class Hashtable<K,V>
extends Dictionary<K,V>
implements Map<K,V>, Cloneable, java.io.Serializable {
/**
* The hash table data.
*/
private transient Entry[] table;
/**
* The total number of entries in the hash table.
*/
private transient int count;
/**
* The table is rehashed when its size exceeds this threshold. (The
* value of this field is (int)(capacity * loadFactor).)
*
* @serial
*/
private int threshold;
/**
* The load factor for the hashtable.
*
* @serial
*/
private float loadFactor;
/**
* The number of times this Hashtable has been structurally modified
* Structural modifications are those that change the number of entries in
* the Hashtable or otherwise modify its internal structure (e.g.,
* rehash). This field is used to make iterators on Collection-views of
* the Hashtable fail-fast. (See ConcurrentModificationException).
*/
private transient int modCount = 0;
/** use serialVersionUID from JDK 1.0.2 for interoperability */
private static final long serialVersionUID = 1421746759512286392L;
/**
* Constructs a new, empty hashtable with the specified initial
* capacity and the specified load factor.
*
* @param initialCapacity the initial capacity of the hashtable.
* @param loadFactor the load factor of the hashtable.
* @exception IllegalArgumentException if the initial capacity is less
* than zero, or if the load factor is nonpositive.
*/
public Hashtable(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal Load: "+loadFactor);
if (initialCapacity==0)
initialCapacity = 1;
this.loadFactor = loadFactor;
table = new Entry[initialCapacity];
threshold = (int)(initialCapacity * loadFactor);
}
/**
* Constructs a new, empty hashtable with the specified initial capacity
* and default load factor (0.75).
*
* @param initialCapacity the initial capacity of the hashtable.
* @exception IllegalArgumentException if the initial capacity is less
* than zero.
*/
public Hashtable(int initialCapacity) {
this(initialCapacity, 0.75f);
}
/**
* Constructs a new, empty hashtable with a default initial capacity (11)
* and load factor (0.75).
*/
public Hashtable() {
this(11, 0.75f);
}
/**
* Constructs a new hashtable with the same mappings as the given
* Map. The hashtable is created with an initial capacity sufficient to
* hold the mappings in the given Map and a default load factor (0.75).
*
* @param t the map whose mappings are to be placed in this map.
* @throws NullPointerException if the specified map is null.
* @since 1.2
*/
public Hashtable(Map<? extends K, ? extends V> t) {
this(Math.max(2*t.size(), 11), 0.75f);
putAll(t);
}
/**
* Returns the number of keys in this hashtable.
*
* @return the number of keys in this hashtable.
*/
public synchronized int size() {
return count;
}
/**
* Tests if this hashtable maps no keys to values.
*
* @return <code>true</code> if this hashtable maps no keys to values;
* <code>false</code> otherwise.
*/
public synchronized boolean isEmpty() {
return count == 0;
}
/**
* Returns an enumeration of the keys in this hashtable.
*
* @return an enumeration of the keys in this hashtable.
* @see Enumeration
* @see #elements()
* @see #keySet()
* @see Map
*/
public synchronized Enumeration<K> keys() {
return this.<K>getEnumeration(KEYS);
}
vector与ArrayList、hashmap与hashtable区别
标签:des style http io color ar os 使用 java
原文地址:http://www.cnblogs.com/wang3680/p/e623a03396945dca50268a4b4ebec22c.html