标签:conv2 config ace 打印 rbo att option models options
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras import layers
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D
x_train = x_train.reshape(
x_train.shape[0], #数据个数
28,28,1 #单组数据 28*28的灰度图
)
一、 二、
[ [
[1] [1,0,0]
[2] $\to$ [0,1,0]
[3] [0,0,1]
] ]
loss:
左:sparse_categorical_crossentropy
右:categorical_crossentropy
model_name = Sequential
model_name .add(Conv2D(32, kernel_size=(3, 3),
activation=‘relu‘,
input_shape=(28,28,1)))
model_name .add(MaxPooling2D(pool_size=(2, 2)))
model_name .add(Dense(64, activation=‘relu‘))
model_name .add(Dense(64, activation=‘relu‘))
model_name .add(Flatten())
model_name .add(Dense(64, activation=‘relu‘))
model_name .add(Dense(10, activation=‘softmax‘))
model_name .summary() #打印model信息
model.compile(loss=tf.keras.losses.categorical_crossentropy,
optimizer=tf.keras.optimizers.Adam(),
metrics=[‘accuracy‘])
或者
sgd=tf.keras.optimizers.SGD(lr=0.01,decay=1e-6,momentum=0.9,nesterov=True)
model.compile(loss=‘categorical_crossentropy‘,
optimizer=sgd,
metrics=[‘accuracy‘]
)
model.fit(x_train, y_train, batch_size=128, epochs=5, verbose=1)
from tensorflow.keras.models import load_model
#保存
model_save_path = "model_name.h5"
model.save(model_save_path)
#读取
model_save_path = "model_name.h5"
load_model(model_save_path)
predict_data = model.predict(train_data)
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" #-1 为CPU; 0,1为GPU
自动分配GPU
config = tf.compat.v1.ConfigProto(allow_soft_placement=True)
config.gpu_options.per_process_gpu_memory_fraction = 0.3
tf.compat.v1.keras.backend.set_session(tf.compat.v1.Session(config=config))
from __future__ import print_function
import numpy as np
import pandas as pd
# import os
# os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
# os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
from tensorflow.keras.models import Sequential
from tensorflow.keras import layers
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D
import tensorflow as tf
config = tf.compat.v1.ConfigProto(allow_soft_placement=True)
config.gpu_options.per_process_gpu_memory_fraction = 0.3
tf.compat.v1.keras.backend.set_session(tf.compat.v1.Session(config=config))
p = r‘train_label.csv‘
q = r‘train.csv‘
with open(p, encoding=‘utf-8‘) as f:
y_train = np.loadtxt(f, delimiter=",", skiprows=1)
y_train = y_train[:, np.newaxis]
y_train = tf.keras.utils.to_categorical(y_train, num_classes=10)
with open(q, encoding=‘utf-8‘) as f:
x_train = np.loadtxt(f, delimiter=",", skiprows=1)
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
x_train /= 255
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation=‘relu‘,
input_shape=(28,28,1)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dense(64, activation=‘relu‘))
model.add(Dense(64, activation=‘relu‘))
model.add(Flatten())
model.add(Dense(64, activation=‘relu‘))
model.add(Dense(10, activation=‘softmax‘))
model.summary()
model.compile(loss=tf.keras.losses.categorical_crossentropy,
optimizer=tf.keras.optimizers.Adam(),
metrics=[‘accuracy‘])
model.fit(x_train, y_train, batch_size=128, epochs=5, verbose=1)
# model_save_path = "model1.h5"
# model.save(model_save_path)
from __future__ import print_function
import numpy as np
import pandas as pd
import os
import tensorflow as tf
config = tf.compat.v1.ConfigProto(allow_soft_placement=True)
config.gpu_options.per_process_gpu_memory_fraction = 0.3
tf.compat.v1.keras.backend.set_session(tf.compat.v1.Session(config=config))
from tensorflow.keras.models import load_model
model_save_path = "model1.h5"
model = load_model(model_save_path)
p = r‘test.csv‘
with open (p,encoding=‘utf-8‘) as f:
x_test = np.loadtxt(f,delimiter=",",skiprows=1)
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
x_test /= 255
y_pred = model.predict(x_test)
Label = np.argmax(y_pred,axis=1)
print(Label)
标签:conv2 config ace 打印 rbo att option models options
原文地址:https://www.cnblogs.com/peterwarlg/p/13887277.html