标签:最小 class 线性 矛盾 span lin 组合 line math
\(y_{0}=\left ( a_{1},a_{2},...,a_{n} \right ) 即y_{0}是a_{1},a_{2},...,a_{n}\)的最大公因数
\(d|a_{i}(d整除a_{i},a_{i}是d的倍数)\)
\(设a_{i}\in Z ,A=\left \{ y|y=\sum_{i=1}^{n}a_{i}x_{i},x_{i}\in Z,1\leq i \leq n \right \}\)
如果\(y_{0}\)是集合A中最小的正数,则\(y_{0}=\left ( a_{1},a_{2},...,a_{n} \right )\)
设d是\(a_{1},a_{2},...,a_{n}\)的一个公因数,\(d|a_{i}\),则\(a_{1},a_{2},...,a_{n}\)的线性组合都是d的倍数
\(d|y_{0}=\sum_{i=1}^{n}a_{i}x‘_{i},故而d\leq y_{0}\)
\(y_{0}=\sum_{i=1}^{n}a_{i}x‘_{i},对任意的y=\sum_{i=1}^{n}a_{i}x_{i},存在q,r\in Z,这里两个式子的a_{i}相同,使得y=qy_{0}+r\)
\(r=y-qy_{0}=a_{1}(x_{1}-qx‘_{1})+...+a_{n}(x_{n}-qx‘_{n})\in A\)
因为r小于\(y_{0},若r\neq 0\)则r是A中比\(y_{0}\)还小的正整数,这与\(y_{0}\)是A中最小的正整数矛盾,故而r=0,\(y_{0}\)|y
显然\(a_{i}\in A,在y=\sum_{i=1}^{n}a_{i}x_{i}中取a_{i}系数x_{i}=1,其他所有x=0,故y_{0}|a_{i}\)
由此可得\(y_{0}也是a_{1},a_{2},...,a_{n}的公因数而d\leq y_{0},所以y_{0}=\left ( a_{1},a_{2},...,a_{n} \right )\)
标签:最小 class 线性 矛盾 span lin 组合 line math
原文地址:https://www.cnblogs.com/lxzbky/p/13920354.html