标签:create com creat 方式 get pytho nec backend ``
简单概括就是将对数据库操作查询所得到的数据放入另外一台机器上(缓存)中,当用户再次请求时,直接去缓存中拿,避免对数据库的频繁操作,加快数据的显示时间,需要知道的是,缓存里面的数据一般都设置有超时时间,缓存一般用在数据变化不大,实时率不高的情况下。
由于Django是动态网站,所有每次请求均会去数据进行相应的操作,当程序访问量大时,耗时必然会更加明显,最简单解决方式是使用:缓存,缓存将一个某个views的返回值保存至内存或者memcache中,5分钟内(默认配置)再有人来访问时,则不再去执行view中的操作,而是直接从内存或者Redis中之前缓存的内容拿到,并返回。
# 此为开始调试用,实际内部不做任何操作
# 配置:
CACHES = {
‘default‘: {
‘BACKEND‘: ‘django.core.cache.backends.dummy.DummyCache‘, # 引擎
‘TIMEOUT‘: 300, # 缓存超时时间(默认300,None表示永不过期,0表示立即过期)
‘OPTIONS‘:{
‘MAX_ENTRIES‘: 300, # 最大缓存个数(默认300)
‘CULL_FREQUENCY‘: 3, # 缓存到达最大个数之后,剔除缓存个数的比例,即:1/CULL_FREQUENCY(默认3)
},
‘KEY_PREFIX‘: ‘‘, # 缓存key的前缀(默认空)
‘VERSION‘: 1, # 缓存key的版本(默认1)
‘KEY_FUNCTION‘ 函数名 # 生成key的函数(默认函数会生成为:【前缀:版本:key】)
}
}
# 自定义key
def default_key_func(key, key_prefix, version):
"""
Default function to generate keys.
Constructs the key used by all other methods. By default it prepends
the `key_prefix‘. KEY_FUNCTION can be used to specify an alternate
function with custom key making behavior.
"""
return ‘%s:%s:%s‘ % (key_prefix, version, key)
def get_key_func(key_func):
"""
Function to decide which key function to use.
Defaults to ``default_key_func``.
"""
if key_func is not None:
if callable(key_func):
return key_func
else:
return import_string(key_func)
return default_key_func
# 此缓存将内容保存至内存的变量中
# 配置:
CACHES = {
‘default‘: {
‘BACKEND‘: ‘django.core.cache.backends.locmem.LocMemCache‘,
‘LOCATION‘: ‘unique-snowflake‘,
}
}
# 注:其他配置同开发调试版本,就是将开发调试版本里面的这几句换成上面这个即可
# 此缓存将内容保存至文件
# 配置:
CACHES = {
‘default‘: {
‘BACKEND‘: ‘django.core.cache.backends.filebased.FileBasedCache‘,
‘LOCATION‘: ‘/var/tmp/django_cache‘,
}
}
# 注:其他配置同开发调试版本
# 此缓存将内容保存至数据库
# 配置:
CACHES = {
‘default‘: {
‘BACKEND‘: ‘django.core.cache.backends.db.DatabaseCache‘,
‘LOCATION‘: ‘my_cache_table‘, # 数据库表
}
}
# 注:执行创建表命令 python manage.py createcachetable
# 此缓存使用python-memcached模块连接memcache
CACHES = {
‘default‘: {
‘BACKEND‘: ‘django.core.cache.backends.memcached.MemcachedCache‘,
‘LOCATION‘: ‘127.0.0.1:11211‘,
}
}
CACHES = {
‘default‘: {
‘BACKEND‘: ‘django.core.cache.backends.memcached.MemcachedCache‘,
‘LOCATION‘: ‘unix:/tmp/memcached.sock‘,
}
}
CACHES = {
‘default‘: {
‘BACKEND‘: ‘django.core.cache.backends.memcached.MemcachedCache‘,
‘LOCATION‘: [
‘172.19.26.240:11211‘,
‘172.19.26.242:11211‘,
]
}
}
# 此缓存使用pylibmc模块连接memcache
CACHES = {
‘default‘: {
‘BACKEND‘: ‘django.core.cache.backends.memcached.PyLibMCCache‘,
‘LOCATION‘: ‘127.0.0.1:11211‘,
}
}
CACHES = {
‘default‘: {
‘BACKEND‘: ‘django.core.cache.backends.memcached.PyLibMCCache‘,
‘LOCATION‘: ‘/tmp/memcached.sock‘,
}
}
CACHES = {
‘default‘: {
‘BACKEND‘: ‘django.core.cache.backends.memcached.PyLibMCCache‘,
‘LOCATION‘: [
‘172.19.26.240:11211‘,
‘172.19.26.242:11211‘,
]
}
}
CACHES = {
"default": {
"BACKEND": "django_redis.cache.RedisCache",
"LOCATION": "redis://127.0.0.1:6379",
"OPTIONS": {
"CLIENT_CLASS": "django_redis.client.DefaultClient",
"CONNECTION_POOL_KWARGS": {"max_connections": 100}
# "PASSWORD": "密码",
}
}
}
# 视图中操作
from django_redis import get_redis_connection
conn = get_redis_connection("default")
"""
使用中间件,经过一系列的认证等操作,如果内容在缓存中存在,则使用FetchFromCacheMiddleware获取内容并返回给用户,当返回给用户之前,判断缓存中是否已经存在,如果不存在则UpdateCacheMiddleware会将缓存保存至缓存,从而实现全站缓存
"""
MIDDLEWARE = [
‘django.middleware.cache.UpdateCacheMiddleware‘,
# 其他中间件...
‘django.middleware.cache.FetchFromCacheMiddleware‘,
]
CACHE_MIDDLEWARE_ALIAS = ""
CACHE_MIDDLEWARE_SECONDS = ""
CACHE_MIDDLEWARE_KEY_PREFIX = ""
# 方式一:
from django.views.decorators.cache import cache_page
@cache_page(60 * 15)
def my_view(request):
...
# 方式二:
from django.views.decorators.cache import cache_page
urlpatterns = [
url(r‘^foo/([0-9]{1,2})/$‘, cache_page(60 * 15)(my_view)),
]
# a. 引入TemplateTag
{% load cache %}
# b. 使用缓存
{% cache 5000 缓存key %}
缓存内容
{% endcache %}
标签:create com creat 方式 get pytho nec backend ``
原文地址:https://www.cnblogs.com/amgulen/p/13951263.html