标签:parent == 移除 OLE htm 理解 obj new oop
在业务场景中,处理一个任务队列,可能需要依照某种优先级顺序,这时,Java中的PriorityQueue(优先队列)便可以派上用场。优先队列的原理与堆排序密不可分,可以参考我之前的一篇博客:
PriorityQueue中维护一个Queue[]数组,在逻辑上把它理解成一个小根堆或大根堆,即一个完全二叉树,每一个三元组中父节点小于两个孩子结点(小根堆,如果是大于则是大根堆)。本博客以小根堆来进行说明,因为PriorityQueue默认实现小根堆,即小的数先出队,当然也可以自定义Comparator实现大根堆。
poll()方法如下:
public E poll() {
if (size == 0)
return null;
int s = --size;
modCount++;
E result = (E) queue[0];
E x = (E) queue[s];
queue[s] = null;
if (s != 0)
siftDown(0, x);
return result;
}
可以看到,队首元素 queue[0] 出队,队尾的元素 queue[s] 进入 siftDown(0, x) 方法进行堆调整。siftDown方法如下:
private void siftDown(int k, E x) {
if (comparator != null)
siftDownUsingComparator(k, x);
else
siftDownComparable(k, x);
}
//k为开始遍历的位置,x为需要插入的值
@SuppressWarnings("unchecked")
private void siftDownComparable(int k, E x) {
Comparable<? super E> key = (Comparable<? super E>)x;
int half = size >>> 1; // loop while a non-leaf
// 只需要遍历到数组的一半即可,保证遍历到最后一个三元组的父节点即可
while (k < half) {
int child = (k << 1) + 1; // assume left child is least
Object c = queue[child];
int right = child + 1;
if (right < size &&
((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
c = queue[child = right];//比较左右孩子结点,取最小的那个
if (key.compareTo((E) c) <= 0)
break;//找到了key应该放入的位置
queue[k] = c;
k = child;
}
queue[k] = key;
}
@SuppressWarnings("unchecked")
private void siftDownUsingComparator(int k, E x) {
int half = size >>> 1;
while (k < half) {
int child = (k << 1) + 1;
Object c = queue[child];
int right = child + 1;
if (right < size &&
comparator.compare((E) c, (E) queue[right]) > 0)
c = queue[child = right];
if (comparator.compare(x, (E) c) <= 0)
break;
queue[k] = c;
k = child;
}
queue[k] = x;
}
可以看到,这与堆排序中的堆调整如出一辙。
offer方法如下所示:
public boolean offer(E e) {
if (e == null)
throw new NullPointerException();
modCount++;
int i = size;
if (i >= queue.length)
grow(i + 1);
size = i + 1;
if (i == 0)
queue[0] = e;
else
siftUp(i, e);
return true;
}
同样,其核心在于 siftUp(i, e) 方法。如下所示:
private void siftUp(int k, E x) {
if (comparator != null)
siftUpUsingComparator(k, x);
else
siftUpComparable(k, x);
}
@SuppressWarnings("unchecked")
private void siftUpComparable(int k, E x) {
Comparable<? super E> key = (Comparable<? super E>) x;
while (k > 0) {
int parent = (k - 1) >>> 1;//结点父节点的下标
Object e = queue[parent];
if (key.compareTo((E) e) >= 0)
break;//如果结点值大于父节点,则可以放置在该三元组下
queue[k] = e;//向子节点赋值父节点的值,不用担心某些值被覆盖,因为初始k等于size
k = parent;
}
queue[k] = key;//最后在待插入位置赋key的值
}
@SuppressWarnings("unchecked")
private void siftUpUsingComparator(int k, E x) {
while (k > 0) {
int parent = (k - 1) >>> 1;
Object e = queue[parent];
if (comparator.compare(x, (E) e) >= 0)
break;
queue[k] = e;
k = parent;
}
queue[k] = x;
}
此方法,是一个不断从父节点往子节点赋值的过程,直到找到适合放置插入结点值的位置。
removeAt 方法如下所示:
private E removeAt(int i) {
// assert i >= 0 && i < size;
modCount++;
int s = --size;
if (s == i) // removed last element
queue[i] = null;
else {
E moved = (E) queue[s];
queue[s] = null;
siftDown(i, moved);
if (queue[i] == moved) {
siftUp(i, moved);
if (queue[i] != moved)
return moved;
}
}
return null;
}
移除下标为i的元素,相当于以 i 为根节点的完全二叉树的出队,于是执行 siftDown 方法调整最后一个元素 moved 的位置,即将该堆调整为小根堆。调整完之后,如果 moved 没有来到 i 的位置,说明 i 以上的堆结构一定符合规则;如果 moved 被调整到 i 位置,i上面的父节点有可能比 moved大,所以需要 siftUp(i, moved) 方法从 i 位置向上调整,调整为小根堆,完毕。
其实不管是 siftUp 方法还是 siftDown 方法,都是利用了完全二叉树的性质,通过父节点与孩子结点之间的快速访问来实现的。
标签:parent == 移除 OLE htm 理解 obj new oop
原文地址:https://www.cnblogs.com/buptleida/p/13970198.html