码迷,mamicode.com
首页 > 其他好文 > 详细

pytorch(十七):多层感知机全连接曾

时间:2020-11-27 10:57:01      阅读:4      评论:0      收藏:0      [点我收藏+]

标签:处理   visio   nsf   src   correct   net   util   ros   super   

一、全连接层用pytorch定义

技术图片

 

 二、MLP举例

技术图片

 

 技术图片

 

 三、具体代码

class MLP(nn.Module):
    def __init__(self):
        super(MLP,self).__init__()
        
        self.model = nn.Sequential(
            nn.Linear(784,200),
            nn.ReLU(inplace = True),
            nn.Linear(200,200),
            nn.ReLU(inplace = True),
            nn.Linear(200,10),
            nn.ReLU(inplace = True)
        )
        
    def forward(self,x):
        x = self.model(x)
        
        return x

epochs = 3
learning_rate = 1e-2
batch_size = 64


train_loader = torch.utils.data.DataLoader(torchvision.datasets.MNIST(datasets/mnist_data,
                train=True,
                download=True,
                transform=torchvision.transforms.Compose([
                torchvision.transforms.ToTensor(),                       # 数据类型转化
                torchvision.transforms.Normalize((0.1307, ), (0.3081, )) # 数据归一化处理
    ])), batch_size=batch_size,shuffle=True)

test_loader = torch.utils.data.DataLoader(torchvision.datasets.MNIST(datasets/mnist_data/,
                train=False,
                download=True,
                transform=torchvision.transforms.Compose([
                torchvision.transforms.ToTensor(),
                torchvision.transforms.Normalize((0.1307, ), (0.3081, ))
    ])),batch_size=batch_size,shuffle=False)


net = MLP()
optimizer = optim.SGD(net.parameters(),lr = learning_rate)
criteon = nn.CrossEntropyLoss()

for epoch in range(epochs):
    for batch_idx,(data,target) in enumerate(train_loader):
        data = data.view(-1,28*28)
        logits = net(data)
        loss= criteon(logits,target)
        
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if batch_idx % 100 == 0:
            print(Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                       100. * batch_idx / len(train_loader), loss.item()))


    test_loss = 0
    correct = 0
    for data, target in test_loader:
        data = data.view(-1, 28 * 28)
        logits = net(data)
        test_loss += criteon(logits, target).item()

        pred = logits.data.max(1)[1]
        correct += pred.eq(target.data).sum()

    test_loss /= len(test_loader.dataset)
    print(\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))

 

pytorch(十七):多层感知机全连接曾

标签:处理   visio   nsf   src   correct   net   util   ros   super   

原文地址:https://www.cnblogs.com/zhangxianrong/p/14026522.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!