码迷,mamicode.com
首页 > 其他好文 > 详细

《Elasticsearch系列》— 开篇简介

时间:2020-12-11 11:42:54      阅读:3      评论:0      收藏:0      [点我收藏+]

标签:可视化   总结   指标   帮助   issues   分享   状态   开源工具   title   

少点代码,多点头发

本文已经收录至我的GitHub,欢迎大家踊跃star 和 issues。

https://github.com/midou-tech/articles

从今天开始准备给大家带来全新的一系列文章,Elasticsearch系列

新系列肯定会有很多疑惑,先为大家答疑解惑,下面是今天要讲的问题

技术图片
为什么写Elasticsearch系列文章?
之前在文章中也陆陆续续的提到过,龙叔是做搜索引擎的。搜索引擎技术属于商业技术,大家耳熟能详的百度搜索,Google搜索,这可都是因为把握核心搜索技术,从而诞生了商业帝国。

每个互联网大厂都想去分一杯搜索的羹,360搜索、神马、头条、搜狗搜索等等,由此可见搜索技术的商业作用和机密性了。

搜索把握用户的入口,巨头们都在争夺
蘑菇街的搜索引擎是一款使用C++开发、完全自研、没有开源的搜索引擎,没有开源就是不能随便写出来的。

但是现在不一样了

第一、我离职了,离开了意味着不在持有那些商业机密了,就算不讲出来我也没啥心理负担(但还是不能讲的,离职协议写的很清楚,不能泄露公司商业机密)。

第二、去新的公司还是在搜索领域,他们用Es Elasticsearch是一个开源搜索,开源的东西可以随便说,但还是不能说公司的商业数据。

自己一直在搜索领域做,输出搜索相关的文章,第一个可以让自己更好的学习和总结,第二个可以让粉丝们了解到搜索这个神秘的技术,增加大家自身的核心竞争力。

后面会说到,Elasticsearch是搜索引擎,但不简单只能使用在搜索领域,他可以作用的场景非常多。

Elasticsearch是什么?
Elasticsearch 是一个分布式的开源搜索和分析引擎,适用于所有类型的数据,包括文本、数字、地理空间、结构化和非结构化数据。

Elasticsearch 在 Apache Lucene 的基础上开发而成,Elasticsearch 以其简单的 REST 风格 API、分布式特性、速度和可扩展性而闻名,是 Elastic Stack 的核心组件。

Elastic Stack 是适用于数据采集、充实、存储、分析和可视化的一组开源工具。人们通常将 Elastic Stack 称为 ELK Stack(代指 Elasticsearch、Logstash 和 Kibana),目前 Elastic Stack 包括一系列丰富的轻量型数据采集代理,这些代理统称为 Beats,可用来向 Elasticsearch 发送数据。

Elasticsearch 的实现原理主要分为以下几个步骤,首先用户将数据提交到Elasticsearch 数据中心,再通过分词控制器去将对应的数据分词,将其权重和分词结果一并存入数据,当用户搜索数据时候,再根据权重将结果排名,打分,再将返回结果呈现给用户。

是什么差不多搞清楚了,再说说ES都哪些成熟的应用以及在哪些领域使用。

Elasticsearch在哪些领域使用?

  • 应用程序搜索
  • 网站搜索
  • 企业搜索
  • 日志处理和分析
  • 基础设施指标和容器监测
  • 应用程序性能监测
  • 地理空间数据分析和可视化
  • 安全分析
  • 业务分析
    Elasticsearch有哪些特点?
    Elasticsearch 很快。 由于 Elasticsearch 是在 Lucene 基础上构建而成的,所以在全文本搜索方面表现十分出色。Elasticsearch 同时还是一个近实时的搜索平台,这意味着从文档索引操作到文档变为可搜索状态之间的延时很短,一般只有一秒。因此,Elasticsearch 非常适用于对时间有严苛要求的用例,例如安全分析和基础设施监测。

Elasticsearch 具有分布式的本质特征。 Elasticsearch 中存储的文档分布在不同的容器中,这些容器称为分片,可以进行复制以提供数据冗余副本,以防发生硬件故障。Elasticsearch 的分布式特性使得它可以扩展至数百台(甚至数千台)服务器,并处理 PB 量级的数据。

Elasticsearch 包含一系列广泛的功能。 除了速度、可扩展性和弹性等优势以外,Elasticsearch 还有大量强大的内置功能(例如数据汇总和索引生命周期管理),可以方便用户更加高效地存储和搜索数据。

Elasticsearch有很好的生态,生态简化了数据采集、可视化和报告过程。 通过与 Beats 和 Logstash 进行集成,用户能够在向 Elasticsearch 中索引数据之前轻松地处理数据。同时,Kibana 不仅可针对 Elasticsearch 数据提供实时可视化,同时还提供 UI 以便用户快速访问应用程序性能监测 (APM)、日志和基础设施指标等数据。

学习Elasticsearch能提高哪些竞争力?
看到Elasticsearch在这么多的领域在使用,特点也这么明显。看到这里估计都不用在说什么核心竞争力,你已经意识到了。

Elastic 于 2018 年 6 月 29 日正式推出 Elastic Certified Engineer 认证考试,认证通过可以获得官方颁发的证书和徽章,title就是 Elastic认证工程师
技术图片

具体认证的细节和含金量,没有具体研究过,但是可以很明显的感受到官方出了这样一个认证,表明社会需要大量这样的人才,而这方面人才的培养和考核指标还欠缺。

有没有必要一定要考这个认证?

个人觉得,和英语四六级一样,通过了再说没用。

如果你是学生,可以考虑去考一个认证,因为你很难有业务场景驱使你去做这方面的成长,认证一定是有难度的,一个一个的困难会驱使你成长,最终这个认证也会成为招聘时一个非常大的亮点。

这个认证会有哪些帮助?

  • 对于快速的构建知识体系帮助。

  • 对于全面的熟悉官方文档帮助。

  • 对于实战解决线上问题帮助。(遇到了相关技术问题基本上不需要再求助于社区,80%以上的问题自己基本就能解决。)

  • 对于增强信心、克服英文恐惧帮助。

Elasticsearch 支持哪些编程语言?

《Elasticsearch系列》— 开篇简介

标签:可视化   总结   指标   帮助   issues   分享   状态   开源工具   title   

原文地址:https://blog.51cto.com/13449864/2560588

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!