码迷,mamicode.com
首页 > 其他好文 > 详细

【柯】代数学引论 第3章 §2.行列式的进一步性质

时间:2020-12-25 11:57:12      阅读:0      评论:0      收藏:0      [点我收藏+]

标签:展开   假设   n+1   ··   rod   mat   矩阵   span   进一步   

如有错误,欢迎在评论区或私信我指出。
\(Page.101\\1.\ D(A)=D(A^{(1)},A^{(2)},A^{(3)},A^{(4)})=D(1000A^{(1)}+100A^{(2)}+10A^{(3)}+A^{(4)},A^{(2)},A^{(3)},A^{(4)})\\\quad 又\ 1000A^{(1)}+100A^{(2)}+10A^{(3)}+A^{(4)}=\begin{pmatrix}1798\\2139\\3255\\4867\end{pmatrix}\ 内元素均可被31整除\\\quad 依第一列展开可知\ D(A)=D(A^{(1)},A^{(2)},A^{(3)},A^{(4)})\ 可被31整除\)?
?
?
\(2.\ 设A为任意n阶斜对称行列式,则必存在n阶可逆矩阵P,使得\ A=P^{T}BP\ ,且 \\\quad detB=\left\{\begin{array}{l}1\quad n\in 2k\\0\quad n\in 2k+1\end{array}\right. \\\quad detA=det^{2}P*detB=\left\{\begin{array}{l}det^{2}P\quad n\in 2k\\0\quad n\in 2k+1\end{array}\right.\)
?
?
\(3.\ 略\)
?
?
\(4.\ 讨论消除第一个 M_{k_{1}}^{n}(x_{1}) 块时(假设k_{1}=max(k_{i})),其余M_{k_{i}}^{n}(x_{i})块的变化\\\quad 显然在初始状态下M_{k_{i}}^{n}(x_{i})(a,b)=\left\{\begin{array}{l}\binom{b-1}{a-1}x_{i}^{b-2}\qquad a>b\\0\qquad else.\end{array}\right. \quad 下面的讨论中我们仅关注a>b的情况\\\quad 定义变换(a):A^{(i)}=A^{(i)}-x_{1}*A^{(i-1)};变换(b):A^{(i)}=A^{(i)}-x_{i}*A^{(i-1)}\\\quad 那么在第一次变换(a)中,M_{k_{i}}^{n}(x_{i})(a,b)=M_{k_{i}}^{n}(x_{i})(a,b)-x_{1}*M_{k_{i}}^{n}(x_{i})(a,b-1)=\binom{b-1}{a-1}x_{i}^{b-2}-\binom{b-1}{a-2}x_{i}^{b-3}\\\quad 以此类推,根据排列组合公式计算得出第k次变换(a)后M_{k_{i}}^{n}(x_{i})(a,b)=\sum_{j=0}^{k}\binom{k}{j}\binom{b-j-1}{a-1}(-1)^{j}x_{i}^{b-j-2}x_{1}^{j}\\\quad 总结得,每次变换(a)使得k=k+1;变换(b)使得b=b-1\\\quad 当b=0时,除第一行每行即可提取出(x_{j}-x_{1})^{k_{1}},共提取出(x_{j}-x_{1})^{k_{1}(k_{j}-1)};第一行可提取出(x_{j}-x_{1})^{k_{1}}\\\quad 综上当m=2时,\Delta =(x_{1}-x_{2})^{k_{1}(k_{2}-1)+k_{1}}=(x_{1}-x_{2})^{k_{1}k_{2}}\\\quad 依次类推我们可以得到\Delta _{n}(k_{1},x_{1};···;k_{n},x_{n})=\prod_{1\leqslant j\leqslant i\leqslant m}(x_{i}-x_{j})^{k_{i}k_{j}}\)
?
?
\(5.\ B _{n}=\begin{vmatrix} 1&s-t&\frac{(s-t)(s-t+1)}{2!}&···&\frac{(s-t)···(s-t+n-2)}{(n-1)!}\\ 1&s-t+1&\frac{(s-t+1)(s-t+2)}{2!}&···&\frac{(s-t+1)···(s-t+n-1)}{(n-1)!}\\ 1&s-t+2&\frac{(s-t+2)(s-t+3)}{2!}&···&\frac{(s-t+2)···(s-t+n)}{(n-1)!}\\ ···&···&···&···&···\\ 1&s-t+n&\frac{(s-t+n)(s-t+n+1)}{2!}&···&\frac{(s-t+n)···(s-t+2n-2)}{(n-1)!}\end{vmatrix}*\prod_{i=1}^{t}\frac{\binom{n+s-i}{n}}{\binom{n+t-i}{n}}\\\ \ \qquad =\begin{vmatrix} 1&s-t&\frac{(s-t)(s-t+1)}{2!}&···&\frac{(s-t)···(s-t+n-2)}{(n-2)!}\\ 0&1&s-t+1&···&\frac{(s-t+1)···(s-t+n-2)}{(n-2)!}\\ 0&1&s-t+2&···&\frac{(s-t+2)···(s-t+n-1)}{(n-2)!}\\ ···&···&···&···&···\\ 0&1&s-t+n&···&\frac{(s-t+n)···(s-t+2n-3)}{(n-2)!}\end{vmatrix}*\prod_{i=1}^{t}\frac{\binom{n+s-i}{n}}{\binom{n+t-i}{n}}\\\ \ \qquad =·········\\\ \ \qquad =\begin{vmatrix} 1&s-t&\frac{(s-t)(s-t+1)}{2!}&···&\frac{(s-t)···(s-t+n-2)}{(n-1)!}\\ 0&1&s-t+1&···&\frac{(s-t+1)···(s-t+n-2)}{(n-2)!}\\ 0&0&1&···&\frac{(s-t+2)···(s-t+n-2)}{(n-3)!}\\ ···&···&···&···&···\\ 0&0&0&···&1\end{vmatrix}*\prod_{i=1}^{t}\frac{\binom{n+s-i}{n}}{\binom{n+t-i}{n}}\\\ \ \qquad =\prod_{i=1}^{t}\frac{\ \binom{n+s-i}{n}\ }{\ \binom{n+t-i}{n}\ }\)
?
?
\(6.\ C_{n}=\begin{vmatrix} \lambda _{1}&1&&···&&\\ -1&\lambda _{2}&1&···&&\\ &-1&\lambda _{3}&···&&\\ ···&···&···&···&···&···\\ &&&···&\lambda _{n-1}&1\\ &&&···&-1&\lambda _{n} \end{vmatrix}\\\ \ \qquad =\lambda _{n}C_{n-1}-\begin{vmatrix} \lambda _{1}&1&&···&&\\ -1&\lambda _{2}&1&···&&\\ &-1&\lambda _{3}&···&&\\ ···&···&···&···&···&···\\ &&&···&\lambda _{n-2}&1\\ &&&···&&-1 \end{vmatrix}\\\ \ \qquad =\lambda _{n}C_{n-1}-\begin{vmatrix} \lambda _{1}&1&&···&&\\ -1&\lambda _{2}&1&···&&\\ &-1&\lambda _{3}&···&&\\ ···&···&···&···&···&···\\ &&&···&\lambda _{n-2}&0\\ &&&···&&-1 \end{vmatrix}\\\ \ \qquad =\lambda _{n}C_{n-1}-C_{n-2}\)
?
?
\(7.\ A_{n}=\begin{vmatrix} 2&-1& &···& & \\ -1&2&-1&···& & \\ &-1&2&···& & \\ ···&···&···&···&···&···\\ & & &···&2&-1\\ & & &···&-1&2 \end{vmatrix}\\\ \ \qquad =\begin{vmatrix} 1&-1& &···& & \\ 0&2&-1&···& & \\ 0&-1&2&···& & \\ ···&···&···&···&···&···\\ 0& & &···&2&-1\\ 1& & &···&-1&2 \end{vmatrix}\\\ \ \qquad =A_{n-1}+(-1)^{i+2}*(-1)^{i}\\\ \ \qquad =A_{n-1}+1\\\ \ \qquad =A_{1}+n-1\\\ \ \qquad =n+1\)
?
?
\(8.\ 利用分块矩阵,略\)
?
?
\(9.\ 略\)
?

【柯】代数学引论 第3章 §2.行列式的进一步性质

标签:展开   假设   n+1   ··   rod   mat   矩阵   span   进一步   

原文地址:https://www.cnblogs.com/cihua/p/Dsxyl_1_3_2.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!