二叉树遍历是树的最基本算法之一,是二叉树上进行其它运算之基础。
所谓遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。
访问结点所做的操作依赖于具体的应用问题。——访问从根结点开始,逐层访问
import java.util.ArrayList; import java.util.Arrays; import java.util.LinkedList; import java.util.Stack; //二叉树的链式结构 class TreeNode { int val; TreeNode left; TreeNode right; TreeNode(int x) { val = x; } } public class TestTraversalTreeNode { /** * 线序遍历 * * @param root 树根 * @return */ public static ArrayList<Integer> preorderTraversal(TreeNode root) { ArrayList<Integer> result = new ArrayList<Integer>(); if (root == null) return result; Stack<TreeNode> stack = new Stack<TreeNode>(); stack.push(root); while (!stack.isEmpty()) { TreeNode t = stack.pop(); result.add(t.val); //先检查push右结点 if (t.right != null) { stack.push(t.right); } if (t.left != null) { stack.push(t.left); } } return result; } /** * 中序遍历 * * @param root 树根 * @return */ public static ArrayList<Integer> inorderTraversal(TreeNode root) { ArrayList<Integer> result = new ArrayList<Integer>(); if (root == null) return result; Stack<TreeNode> stack = new Stack<TreeNode>(); TreeNode p = root; //如果有左结点则一直push while (!stack.isEmpty() || p != null) { if (p != null) { stack.push(p); p = p.left; } else { TreeNode n = stack.pop(); result.add(n.val); p = n.right; } } return result; } /** * 后序遍历 * * @param root 树根 * @return */ public static ArrayList<Integer> postorderTraversal(TreeNode root) { ArrayList<Integer> result = new ArrayList<Integer>(); if (root == null) { return result; } Stack<TreeNode> stack = new Stack<TreeNode>(); stack.push(root); TreeNode prev = null;// 记录当前结点的上一个结点 while (!stack.empty()) { TreeNode curr = stack.peek(); // 查看当前结点是否是叶节点,是的话就访问 if (prev == null || prev.left == curr || prev.right == curr) { if (curr.left != null) { stack.push(curr.left); } else if (curr.right != null) { stack.push(curr.right); } else {// 当前结点是叶节点 stack.pop(); result.add(curr.val); } // 查看prev是否是的当前结点左结点 } else if (curr.left == prev) { if (curr.right != null) { stack.push(curr.right); } else { stack.pop(); result.add(curr.val); } // 查看prev是否是当前结点的右结点 } else if (curr.right == prev) { stack.pop(); result.add(curr.val); } prev = curr; } return result; } /** * 层次遍历 * * @param root 树根 * @return */ public static ArrayList<Integer> levelTraversal(TreeNode root) { ArrayList<Integer> result = new ArrayList<Integer>(); LinkedList<TreeNode> current = new LinkedList<TreeNode>(); if (root != null) { current.add(root); result.add(root.val); } while (current.size() > 0) { LinkedList<TreeNode> parents = current; current = new LinkedList<TreeNode>(); for (TreeNode parent : parents) { if (parent.left != null) { current.add(parent.left); result.add(parent.left.val); } if (parent.right != null) { current.add(parent.right); result.add(parent.right.val); } } } return result; } /** * 遍历二叉树的第k行 * * @param root 二叉树根 * @param k 第k行 * @return 第k行的遍历 */ public static String findLevelList2(TreeNode root, int k) { ArrayList<LinkedList<TreeNode>> result = new ArrayList<LinkedList<TreeNode>>(); LinkedList<TreeNode> current = new LinkedList<TreeNode>(); if (root != null) { current.add(root); } int count = 0; while (current.size() > 0) { result.add(current); if (count == k) { return listToString(current); } count++; LinkedList<TreeNode> parents = current; current = new LinkedList<TreeNode>(); for (TreeNode parent : parents) { if (parent.left != null) { current.add(parent.left); } if (parent.right != null) { current.add(parent.right); } } } return null; } /** * 链表的结点转化为字符串进行输出 * @param list * @return */ public static String listToString(LinkedList<TreeNode> list) { int[] arr = new int[list.size()]; int i = 0; for (TreeNode node : list) { arr[i] = node.val; i++; } return Arrays.toString(arr); } public static void main(String[] args) { TreeNode root = new TreeNode(1); root.left = new TreeNode(2); root.right = new TreeNode(3); root.left.left = new TreeNode(4); root.left.right = new TreeNode(5); System.out.println("前序:" + preorderTraversal(root).toString()); System.out.println("中序:" + inorderTraversal(root).toString()); System.out.println("后序:" + postorderTraversal(root).toString()); System.out.println("顺序:" + levelTraversal(root).toString()); System.out.println("K序:" + findLevelList2(root, 2)); } }
原文地址:http://blog.csdn.net/lgcssx/article/details/41049091