标签:mod debug 方法 rbo pre 等等 缩小 inter def
二分类模型做了3个实现
1. tensorflow lower API 实现逻辑回归二分类
2. tensorflow senior API 实现二分类(sigmod函数由API内部默认实现)
3. sklearn 的逻辑回归包用于比较输出
需要注意的是 tensorflow 中对于函数输出 nan 与 inf 的处理
由于数据生成时值域较大[-35, 85], 在线性部完成计算后,
exp(x)输出超过浮点精度上边界会返回 inf
此时如果对于 y = exp(x) 做 tf.clip_by_value(y, 1e-10, 1e10) 的操作
(或者采用 tf.where 等等裁剪函数)
在 tfdbg 下依然会报 has_inf_or_nan 的错误, 并且参数估计输出始终为 nan
关键在于 tensorflow 中不能只是简单粗暴的裁剪函数输出值
而是要保证 exp(x) 中 x 的值域合理
也就是需要裁剪 “Wx+B” 线性多项式的输出
但是如此裁剪 容易导致多项式 Wx + B 参数估计产生偏倚
可选的解决方法之一是基于样本stdev做正规化(z-score)
在不改变样本分布的情况下缩小值域
import numpy as NP import tensorflow as TF import random import matplotlib.pyplot as PLT from tensorflow.python import debug as tf_debug def rotation_mat(n_degree): theta = n_degree / 180 * NP.pi m = NP.mat( [[NP.cos(theta), -NP.sin(theta)], [NP.sin(theta), NP.cos(theta)]] ) return m #以两个中心点为基础生成二类样本 centra0 = NP.mat([0, 0]) centra1 = NP.mat([50, 50]) points_data = NP.zeros((720, 2)) labels_data = NP.zeros((720, 1)) for i in range(points_data.shape[0]): rd = random.randint(0, 360) rmat = rotation_mat(rd) rxy = NP.mat([random.randint(0, 35), random.randint(0, 35)]) if i % 2 == 0: centra_p = centra0 label_p = 0 else: centra_p = centra1 label_p = 1 point = rxy * rmat + centra_p points_data[i] = point[0] labels_data[i] = label_p #=========================================================== #=========================================================== #为了防止出现exp值域溢出,基于标准差正规化数据 x_mul = 1 y_mul = 1 train_data = points_data.copy() if 1: x_mul = points_data[:,0].std() y_mul = points_data[:,1].std() train_data[:,0] /= x_mul train_data[:,1] /= y_mul #tensorflow X = TF.placeholder(TF.float32, [None, 2], name="X") Y = TF.placeholder(TF.float32, [None, 1], name="Y") W = TF.Variable(TF.zeros([2, 1]), name="W") B = TF.Variable(TF.zeros([1, 1]), name="B") #多项式 linear_mod = TF.matmul(X, W) + B #将多项式函数输出值用S函数(这里选用logit), 映射到值域(0, 1) logic_mod = 1 / (1 + TF.exp(-linear_mod)) #最大似然对数损失 #loss = -TF.reduce_mean(Y * TF.log(logic_mod) + (1 - Y) * TF.log(1 - logic_mod)) #化简形式 loss_p0 = Y * -linear_mod loss_p1 = TF.log(1 + TF.exp(-linear_mod)) loss = TF.reduce_mean(loss_p1 - loss_p0) #学习率 learning_rate = 0.01 #使用梯度下降优化 gdop = TF.train.GradientDescentOptimizer(learning_rate) #正则化梯度下降率 gdop = TF.contrib.estimator.clip_gradients_by_norm(gdop, 2.0) gdop = gdop.minimize(loss) sess = TF.Session() sess.run(TF.global_variables_initializer()) #sess = tf_debug.LocalCLIDebugWrapperSession(sess) for s in range(10000): sess.run(gdop, {X:train_data, Y:labels_data}) print(">>>>> with tensorflow") esti_W = sess.run(W) esti_B = sess.run(B) x_coef = -esti_W[0][0] / esti_W[1] bias_b = -esti_B[0][0] / esti_W[1] print("y = %.2fx + %.2f" % (x_coef*y_mul/x_mul, bias_b*y_mul)) if 1: fig = PLT.figure() ax1 = fig.add_subplot(111) for i in range(points_data.shape[0]): x, y = points_data[i] if labels_data[i] == 1: ax1.plot(x, y, ‘ro‘) else: ax1.plot(x, y, ‘go‘) #empirical estimate # x + y - 50 = 0 x_range = [x[0] for x in points_data] esti_y = [(x_coef * x[0] / x_mul + bias_b)*y_mul for x in points_data] ax1.plot(x_range, esti_y, ‘k-‘) #======================================================= #tensorflow senior APIs #======================================================= TF.logging.set_verbosity(TF.logging.ERROR) def data_feeder(xy_data, label_data): data_dc = {"x":xy_data[:,0], "y":xy_data[:,1]} ts = TF.data.Dataset.from_tensor_slices((data_dc, label_data.reshape([1,-1])[0])) ts = ts.shuffle(label_data.shape[1]).repeat().batch(label_data.shape[1]) t_data, t_label = ts.make_one_shot_iterator().get_next() return t_data, t_label clf_feature_cols = [ TF.feature_column.numeric_column("x"), TF.feature_column.numeric_column("y") ] clf_opt = TF.train.GradientDescentOptimizer(0.01) clf_opt = TF.contrib.estimator.clip_gradients_by_norm(clf_opt, 2.0) clf_model = TF.estimator.LinearClassifier( feature_columns=clf_feature_cols, optimizer=clf_opt ) #tf的高级api对于过大的输入项(如使得exp(x)超出浮点精度的x) #处理方式应该是直接进行了裁剪, 这会导致截距项bias发生变化 #所以依然需要对输入变量做正规化 clf_model.train( input_fn = lambda :data_feeder(train_data, labels_data), steps=10000 ) clf_x_coef = clf_model.get_variable_value(‘linear/linear_model/x/weights‘)[0][0] clf_y_coef = clf_model.get_variable_value(‘linear/linear_model/y/weights‘)[0][0] clf_b_bias = clf_model.get_variable_value(‘linear/linear_model/bias_weights‘)[0] print(">>>>> with tensorflow senior APIs") print("y = %.2fx + %.2f" % (-clf_x_coef/clf_y_coef*y_mul/x_mul, -clf_b_bias/clf_y_coef*y_mul) ) #======================================================= #sklearn #======================================================= print(">>>> with sklearn") from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr.fit(points_data, labels_data) skl_x_coef = lr.coef_[0][0] / -lr.coef_[0][1] skl_b_bias = lr.intercept_[0] / -lr.coef_[0][1] print("y = %.2fx + %.2f" % (skl_x_coef, skl_b_bias))
logistic regression with tensorflow
标签:mod debug 方法 rbo pre 等等 缩小 inter def
原文地址:https://www.cnblogs.com/tpoy/p/14402357.html