标签:compile 安装 mos rgba force memory code module install
2021-02-26 22:54:13.146272: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1406] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 2989 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1050, pci bus id: 0000:01:00.0, compute capability: 6.1)
2021-02-26 22:54:13.146839: I tensorflow/compiler/jit/xla_gpu_device.cc:99] Not creating XLA devices, tf_xla_enable_xla_devices not set
Traceback (most recent call last):
File "E:/att.py", line 61, in <module>
m = model_attention_applied_after_lstm()
File "E:/att.py", line 35, in model_attention_applied_after_lstm
attention_mul = attention_3d_block(lstm_out)
File "E:/att.py", line 27, in attention_3d_block
output_attention_mul = merge([inputs, a_probs], name=‘attention_mul‘, mode=‘mul‘)
TypeError: ‘module‘ object is not callable
================
如果要使用TF2.4.1那么需求是安装有CUDA 11.0,而在2.3之前,还是10.1
tensorboard 2.4.1
tensorboard-plugin-wit 1.8.0
tensorflow 2.4.1
tensorflow-estimator 2.4.0
为了兼容性装回2.3.0
pip install --upgrade tensorflow-gpu==2.3.0
pip install --upgrade tensorflow==2.3.0
装回后再看看版本
pip3 list
标签:compile 安装 mos rgba force memory code module install
原文地址:https://www.cnblogs.com/emanlee/p/14454301.html